932 resultados para Computer Graphics
Resumo:
This thesis describes all process of the development of music visualization, starting with the implementation, followed by realization and then evaluation. The main goal is to have to knowledge of how the audience live performance experience can be enhanced through music visualization. With music visualization is possible to give a better understanding about the music feelings constructing an intensive atmosphere in the live music performance, which enhances the connection between the live music and the audience through visuals. These visuals have to be related to the live music, furthermore has to quickly respond to live music changes and introduce novelty into the visuals. The mapping between music and visuals is the focus of this project, in order to improve the relationship between the live performance and the spectators. The implementation of music visualization is based on the translation of music into graphic visualizations, therefore at the beginning the project was based on the existent works. Later on, it was decided to introduce new ways of conveying music into visuals. Several attempts were made in order to discover the most efficient mapping between music and visualization so people can fully connect with the performance. Throughout this project, those attempts resulted in several music visualizations created for four live music performances, afterwards it was produced an online survey to evaluate those live performances with music visualization. In the end, all conclusions are presented based on the results of the online survey, and also is explained which music elements should be depicted in the visuals, plus how those visuals should respond to the selected music elements.
Resumo:
The manufacturing of above and below-knee prosthesis starts by taking surfac measurements of the patient s residual limb. This demands the making of a cartridg with appropriate fitting and customized to the profile of each patient. The traditiona process in public hospitals in Brazil begins with the completion of a record file (according to law nº388, of July 28, 1999 by the ministry of the health) for obtaining o the prosthesis, where it is identified the amputation level, equipment type, fitting type material, measures etc. Nowadays, that work is covered by the Brazilian Nationa Health Service (SUS) and is accomplished in a manual way being used commo measuring tapes characterizing a quite rudimentary, handmade work and without an accuracy.In this dissertation it is presented the development of a computer integrate tool that it include CAD theory, for visualization of both above and below-knee prosthesis in 3D (i.e. OrtoCAD), as well as, the design and the construction a low cos electro-mechanic 3D scanner (EMS). This apparatus is capable to automatically obtain geometric information of the stump or of the healthy leg while ensuring smalle uncertainty degree for all measurements. The methodology is based on reverse engineering concepts so that the EMS output is fed into the above mentioned academi CAD software in charge of the 3D computer graphics reconstruction of the residualimb s negative plaster cast or even the healthy leg s mirror image. The obtained results demonstrate that the proposed model is valid, because it allows the structura analysis to be performed based on the requested loads, boundary conditions, material chosen and wall thickness. Furthermore it allows the manufacturing of a prosthesis cartridge meeting high accuracy engineering patterns with consequent improvement in the quality of the overall production process
Resumo:
The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above
Resumo:
The infographics historically experience the process of evolution of journalism, from the incipient models handmade in the eighteenth century to the inclusion of computers and sophisticated software today. In order to face the advent of TV against of the partiality readers of the printed newspaper, or to represent the Gulf War, where not allowed photography, infographics reaches modern levels of production and publication. The technical devices which enabled the infographics to evolve the environment of the internet, with conditions for the manipulation of the reader, incorporating video, audio and animations, so styling of interactive infographics. These digital models of information visualization recently arrived daily in the northeast and on their respective web sites with features regionalized. This paper therefore proposes to explore and describe the processes of producing the interactive infographics, taking the example of the Diário do Nordeste, Fortaleza, Ceará, whose department was created one year ago. Therefore, based on aspects that guide the theory of journalism, as newsmaking, filters that focus on productive routine (gatekeeping) and the construction stages of the news. This research also draws on the theoretical framework on the subject, in concepts essential characteristics of computer graphics, as well as the methodological procedures and systematic empirical observations in production routines of the newsroom who can testify limitations and / or advances
Resumo:
A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward
Resumo:
Non-Photorealisitc Rendering (NPR) is a class of techniques that aims to reproduce artistic techniques, trying to express feelings and moods on the rendered scenes, giving an aspect of that they had been made "by hand". Another way of defining NPR is that it is the processing of scenes, images or videos into artwork, generating scenes, images or videos that can have the visual appeal of pieces of art, expressing the visual and emotional characteristics of artistic styles. This dissertation presents a new method of NPR for stylization of images and videos, based on a typical artistic expression of the Northeast region of Brazil, that uses colored sand to compose landscape images on the inner surface of glass bottles. This method is comprised by one technique for generating 2D procedural textures of sand, and two techniques that mimic effects created by the artists using their tools. It also presents a method for generating 21 2D animations in sandbox from the stylized video. The temporal coherence within these stylized videos can be enforced on individual objects with the aid of a video segmentation algorithm. The present techniques in this work were used on stylization of synthetic and real videos, something close to impossible to be produced by artist in real life
Resumo:
The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.
Resumo:
Image orientation is a basic problem in Digital Photogrammetry. While interior and relative orientations were succesfully automated, the same can not be said about absolute orientation. This process can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features in the object space and its homologous in the image space. A build-in self-diagnosis is also used in this method, that is based on the implementation of data snooping statistic test in the process of spatial resection, using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
Geometric accuracy of a close-range photogrammetric system is assessed in this paper considering surface reconstruction with structured light as its main purpose. The system is based on an off-the-shelf digital camera and a pattern projector. The mathematical model for reconstruction is based on the parametric equation of the projected straight line combined with collinearity equations. A sequential approach for system calibration was developed and is presented. Results obtained from real data are also presented and discussed. Experiments with real data using a prototype have indicated 0.5mm of accuracy in height determination and 0.2mm in the XY plane considering an application where the object was 1630mm distant from the camera.