909 resultados para Computational complexity
Resumo:
We present a stochastic approach for solving the quantum-kinetic equation introduced in Part I. A Monte Carlo method based on backward time evolution of the numerical trajectories is developed. The computational complexity and the stochastic error are investigated numerically. Variance reduction techniques are applied, which demonstrate a clear advantage with respect to the approaches based on symmetry transformation. Parallel implementation is realized on a GRID infrastructure.
Resumo:
A parallel interference cancellation (PIC) detection scheme is proposed to suppress the impact of imperfect synchronisation. By treating as interference the extra components in the received signal caused by timing misalignment, the PIC detector not only offers much improved performance but also retains a low structural and computational complexity.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
This paper addresses the nature and cause of Specific Language Impairment (SLI) by reviewing recent research in sentence processing of children with SLI compared to typically developing (TD) children and research in infant speech perception. These studies have revealed that children with SLI are sensitive to syntactic, semantic, and real-world information, but do not show sensitivity to grammatical morphemes with low phonetic saliency, and they show longer reaction times than age-matched controls. TD children from the age of 4 show trace reactivation, but some children with SLI fail to show this effect, which resembles the pattern of adults and TD children with low working memory. Finally, findings from the German Language Development (GLAD) Project have revealed that a group of children at risk for SLI had a history of an auditory delay and impaired processing of prosodic information in the first months of their life, which is not detectable later in life. Although this is a single project that needs to be replicated with a larger group of children, it provides preliminary support for accounts of SLI which make an explicit link between an early deficit in the processing of phonology and later language deficits, and the Computational Complexity Hypothesis that argues that the language deficit in children with SLI lies in difficulties integrating different types of information at the interfaces.
Resumo:
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the length of the code word. However, time-selective fading channels do exist, and in such case conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. As a sequel to the authors' previous papers on this subject, this paper aims to eliminate the error floor of the H(i)-coded O-STBC system (i = 3 and 4) by employing the techniques of: 1) zero forcing (ZF) and 2) parallel interference cancellation (PIC). It is. shown that for an H(i)-coded system the PIC is a much better choice than the ZF in terms of both performance and computational complexity. Compared with the, conventional H(i) detector, the PIC detector incurs a moderately higher computational complexity, but this can well be justified by the enormous improvement.
Resumo:
This letter proposes the subspace-based blind adaptive channel estimation algorithm for dual-rate quasi-synchronous DS/CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increasing computational complexity.
Resumo:
This paper proposes the subspace-based space-time (ST) dual-rate blind linear detectors for synchronous DS/CDMA systems, which can be viewed as the ST extension of our previously presented purely temporal dual-rate blind linear detectors. The theoretical analyses on their performances are also carried out. Finally, the two-stage ST blind detectors are presented, which combine the adaptive purely temporal dual-rate blind MMSE filters with the non-adaptive beamformer. Their adaptive stages with parallel structure converge much faster than the corresponding adaptive ST dual-rate blind MMSE detectors, while having a comparable computational complexity to the latter.
Resumo:
This paper proposes a subspace based blind adaptive channel estimation algorithm for dual-rate DS-CDMA systems, which can operate at the low-rate (LR) or high-rate (HR) mode. Simulation results show that the proposed blind adaptive algorithm at the LR mode has a better performance than that at the HR mode, with the cost of an increased computational complexity.
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
This paper proposes a filter-based algorithm for feature selection. The filter is based on the partitioning of the set of features into clusters. The number of clusters, and consequently the cardinality of the subset of selected features, is automatically estimated from data. The computational complexity of the proposed algorithm is also investigated. A variant of this filter that considers feature-class correlations is also proposed for classification problems. Empirical results involving ten datasets illustrate the performance of the developed algorithm, which in general has obtained competitive results in terms of classification accuracy when compared to state of the art algorithms that find clusters of features. We show that, if computational efficiency is an important issue, then the proposed filter May be preferred over their counterparts, thus becoming eligible to join a pool of feature selection algorithms to be used in practice. As an additional contribution of this work, a theoretical framework is used to formally analyze some properties of feature selection methods that rely on finding clusters of features. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We study the following problem. Given two sequences x and y over a finite alphabet, find a repetition-free longest common subsequence of x and y. We show several algorithmic results, a computational complexity result, and we describe a preliminary experimental study based on the proposed algorithms. We also show that this problem is APX-hard. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures