987 resultados para Compound forming systems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the use of reduced fusion cross sections in the derivation of fusion barrier distributions. We show that the elimination of static effects associated with system sizes and optical potentials obtained by the recently introduced fusion functions can be extended to barrier distributions. This can be a useful tool for systematic studies of breakup coupling effects in fusion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonideal cavity, we first engineer effective interactions, which allow us to achieve two classes of decoherence-free evolution of superpositions of the ground and excited ionic levels: those with a time-dependent azimuthal or polar angle. As an application, we generalize the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under nonadiabatic evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report electron-paramagnetic resonance (EPR) studies at similar to 9.5 GHz (X band) and similar to 34 GHz (Q band) of powder and single-crystal samples of the compound Cu(2)[TzTs](4) [N-thiazol-2-yl-toluenesulfonamidatecopper(II)], C(40)H(36)Cu(2)N(8)O(8)S(8), having copper(II) ions in dinuclear units. Our data allow determining an antiferromagnetic interaction J(0)=(-113 +/- 1) cm(-1) (H(ex)=-J(0)S(1)center dot S(2)) between Cu(II) ions in the dinuclear unit and the anisotropic contributions to the spin-spin coupling matrix D (H(ani)=S(1)center dot D center dot S(2)), a traceless symmetric matrix with principal values D/4=(0.198 +/- 0.003) cm(-1) and E/4=(0.001 +/- 0.003) cm(-1) arising from magnetic dipole-dipole and anisotropic exchange couplings within the units. In addition, the single-crystal EPR measurements allow detecting and estimating very weak exchange couplings between neighbor dinuclear units, with an estimated magnitude parallel to J(')parallel to=(0.060 +/- 0.015) cm(-1). The interactions between a dinuclear unit and the ""environment"" of similar units in the structure of the compound produce a spin dynamics that averages out the intradinuclear dipolar interactions. This coupling with the environment leads to decoherence, a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling. Our EPR experiments provide a new procedure to follow the classical exchange-narrowing process as a shift and collapse of the line structure (not only as a change of the resonance width), which is described with general (but otherwise simple) theories of magnetic resonance. Using complementary procedures, our EPR measurements in powder and single-crystal samples allow measuring simultaneously three types of interactions differing by more than three orders of magnitude (between 113 cm(-1) and 0.060 cm(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C11H10N2O3S, was synthesized from furoyl isothiocyanate and furfurylamine in dry acetone. The thiourea group is in the thioamide form. The trans-cis geometry of the thiourea group is stabilized by intramolecular hydrogen bonding between the carbonyl and cis-thioamide and results in a pseudo-S(6) planar ring which makes dihedral angles of 2.5 (3) and 88.1 (2)degrees with the furoyl and furfuryl groups, respectively. There is also an intramolecular hydrogen bond between the furan O atom and the other thioamide H atom. In the crystal structure, molecules are linked by two intermolecular N-H center dot center dot center dot O hydrogen bonds, forming dimers. These dimers are stacked within the crystal structure along the [010] direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C(10)H(12)N(2)OS, the amide NCO group is twisted relative to the thioureido SCN(2) group, forming a dihedral angle of 55.3 (2)degrees. The crystal packing shows intermolecular N-H center dot center dot center dot S and weak C-H center dot center dot center dot O interactions, the former giving rise to the formation of centrosymmetric R(2)(2)(8) dimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C(9)H(8)O(2)S(2), can be used as a chain transfer agent and may be used to control the behavior of polymerization reactions. O-H center dot center dot center dot O hydrogen bonds of moderate character link the molecules into dimers. In the crystal, the dimers are linked into sheets by C-H center dot center dot center dot O interactions, forming R(4)(2)(12) and R(2)(2)(8) edge-fused rings running parallel to [101]. There are no intermolecular interactions involving the S atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title 2:1 complex of 3-nitrophenol (MNP) and 4,4'-bipyridyl N, N'-dioxide (DPNO), 2C(6)H(5)NO(3)center dot C(10)H(8)N(2)O(2) or 2MNP center dot DPNO, crystallizes as a centrosymmetric three-component adduct with a dihedral angle of 59.40 (8)degrees between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid-point of the C-C bond linking its aromatic rings). The complex owes its formation to O-H center dot center dot center dot O hydrogen bonds [O center dot center dot center dot O = 2.605 (3) angstrom]. Molecules are linked by intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions forming R(2)(1) (6) and R(2)(2) (10) rings, and R(6)(6) (34) and R(4)(4) (26) macro-rings, all of which are aligned along the [(1) over bar 01] direction, and R(2)(2) (10) and R(2)(1) (7) rings aligned along the [010] direction. The combination of chains of rings along the [(1) over bar 01] and [010] directions generates the three-dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N-O distance [1.325 (2) angstrom] depends not only on the interactions involving the O atom at the N-O group, but also on the structural ordering and additional three-dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(d,p) level is compared with the molecular structure in the solid state.