993 resultados para Cauchy Singular Integral Equation
Resumo:
El propósito de esta tesis doctoral es el desarrollo de un modelo integral de evaluación de la gestión para instituciones de educación superior (IES), fundamentado en valorar la gestión de diferentes subsistemas que la integran, así como estudiar el impacto en la planificación y gestión institucional. Este Modelo de Evaluación Institucional fue denominado Modelo Integral de Evaluación de Gestión de las IES (MIEGIES), que incorpora la gestión de la complejidad, los aspectos gerenciales, el compromiso o responsabilidad social, los recursos, además de los procesos propios universitarios con una visión integral de la gestión. Las bases conceptuales se establecen por una revisión del contexto mundial de la educación superior, pasando por un análisis sobre evaluación y calidad en entornos universitarios. La siguiente reflexión conceptual versó sobre la gestión de la complejidad, de la gestión gerencial, de la gestión de responsabilidad social universitaria, de la gestión de los recursos y de la gestión de los procesos, seguida por un aporte sobre modelaje y modelos. Para finalizar, se presenta un resumen teórico sobre el alcance de la aplicación de ecuaciones estructurales para la validación de modelos. El desarrollo del modelo conceptual, dimensiones e indicadores, fue efectuado aplicando los principios de la metodología de sistemas suaves –SSM. Para ello, se identifica la definición raíz (DR), la razón sistémica de ser del modelo, para posteriormente desarrollar sus componentes y principios conceptuales. El modelo quedó integrado por cinco subsistemas, denominados: de la Complejidad, de la Responsabilidad Social Universitaria, Gerencial, de Procesos y de Recursos. Los subsistemas se consideran como dimensiones e indicadores para el análisis y son los agentes críticos para el funcionamiento de una IES. Los aspectos referidos a lo Epistemetodológico, comenzó por identificar el enfoque epistemológico que sustenta el abordaje metodológico escogido. A continuación se identifican los elementos clásicos que se siguieron para llevar a cabo la investigación: Alcance o profundidad, población y muestra, instrumentos de recolección de información y su validación, para finalizar con la explicación procedimental para validar el modelo MIEGIES. La población considerada para el estudio empírico de validación fueron 585 personas distribuidas entre alumnos, docentes, personal administrativo y directivos de una Universidad Pública Venezolana. La muestra calculada fue de 238 individuos, número considerado representativo de la población. La aplicación de los instrumentos diseñados y validados permitió la obtención de un conjunto de datos, a partir de los cuales se validó el modelo MIEGIES. La validación del Modelo MIGEIES parte de sugerencias conceptuales para el análisis de los datos. Para ello se identificaron las variables relevantes, que pueden ser constructos o conceptos, las variables latentes que no pueden ser medidas directamente, sino que requiere seleccionar los indicadores que mejor las representan. Se aplicó la estrategia de modelación confirmatoria de los Modelos de Ecuaciones Estructurales (SEM). Para ello se parte de un análisis descriptivo de los datos, estimando la fiabilidad. A continuación se aplica un análisis factorial exploratorio y un análisis factorial confirmatorio. Para el análisis de la significancia del modelo global y el impacto en la planificación y gestión, se consideran el análisis de coeficientes de regresión y la tabla de ANOVA asociada, la cual de manera global especifica que el modelo planteado permite explicar la relación entre las variables definidas para la evaluación de la gestión de las IES. Así mismo, se encontró que este resultado de manera global explica que en la evaluación institucional tiene mucha importancia la gestión de la calidad y las finanzas. Es de especial importancia destacar el papel que desarrolla la planificación estratégica como herramienta de gestión que permite apoyar la toma de decisiones de las organizaciones en torno al quehacer actual y al camino que deben recorrer en el futuro para adecuarse a los cambios y a las demandas que les impone el entorno. El contraste estadístico de los dos modelos ajustados, el teórico y el empírico, permitió a través de técnicas estadísticas multivariables, demostrar de manera satisfactoria, la validez y aplicación del modelo propuesto en las IES. Los resultados obtenidos permiten afirmar que se pueden estimar de manera significativa los constructos que definen la evaluación de las instituciones de educación superior mediante el modelo elaborado. En el capítulo correspondiente a Conclusiones, se presenta en una de las primeras instancias, la relación conceptual propuesta entre los procesos de evaluación de la gestión institucional y de los cinco subsistemas que la integran. Posteriormente se encuentra que los modelos de ecuaciones estructurales con base en la estrategia de modelación confirmatoria es una herramienta estadística adecuada en la validación del modelo teórico, que fue el procedimiento propuesto en el marco de la investigación. En cuanto al análisis del impacto del Modelo en la Planificación y la Gestión, se concluye que ésta es una herramienta útil para cerrar el círculo de evaluación institucional. La planificación y la evaluación institucional son procesos inherentes a la filosofía de gestión. Es por ello que se recomienda su práctica como de necesario cumplimiento en todas las instancias funcionales y operativas de las Instituciones de Educación Superior. ABSTRACT The purpose of this dissertation is the development of a comprehensive model of management evaluation for higher education institutions (HEIs), based on evaluating the management of different subsystems and study the impact on planning and institutional management. This model was named Institutional Assessment Comprehensive Evaluation Model for the Management of HEI (in Spanish, MIEGIES). The model incorporates the management of complexity, management issues, commitment and social responsibility and resources in addition to the university's own processes with a comprehensive view of management. The conceptual bases are established by a review of the global context of higher education, through analysis and quality assessment in university environments. The following conceptual discussions covered the management of complexity, management practice, management of university social responsibility, resources and processes, followed by a contribution of modeling and models. Finally, a theoretical overview of the scope of application of structural equation model (SEM) validation is presented. The development of the conceptual model, dimensions and indicators was carried out applying the principles of soft systems methodology (SSM). For this, the root definition (RD), the systemic rationale of the model, to further develop their components and conceptual principles are identified. The model was composed of five subsystems, called: Complexity, University Social Responsibility, Management, Process and Resources. The subsystems are considered as dimensions and measures for analysis and are critical agents for the functioning of HEIs. In matters relating to epistemology and methodology we began to identify the approach that underpins the research: Scope, population and sample and data collection instruments. The classic elements that were followed to conduct research are identified. It ends with the procedural explanation to validate the MIEGIES model. The population considered for the empirical validation study was composed of 585 people distributed among students, faculty, staff and authorities of a public Venezuelan university. The calculated sample was 238 individuals, number considered representative of the population. The application of designed and validated instruments allowed obtaining a data set, from which the MIEGIES model was validated. The MIGEIES Model validation is initiated by the theoretical analysis of concepts. For this purpose the relevant variables that can be concepts or constructs were identified. The latent variables cannot be measured directly, but require selecting indicators that best represent them. Confirmatory modeling strategy of Structural Equation Modeling (SEM) was applied. To do this, we start from a descriptive analysis of the data, estimating reliability. An exploratory factor analysis and a confirmatory factor analysis were applied. To analyze the significance of the overall models the analysis of regression coefficients and the associated ANOVA table are considered. This comprehensively specifies that the proposed model can explain the relationship between the variables defined for evaluating the management of HEIs. It was also found that this result comprehensively explains that for institutional evaluation quality management and finance are very important. It is especially relevant to emphasize the role developed by strategic planning as a management tool that supports the decision making of organizations around their usual activities and the way they should evolve in the future in order to adapt to changes and demands imposed by the environment. The statistical test of the two fitted models, the theoretical and the empirical, enabled through multivariate statistical techniques to demonstrate satisfactorily the validity and application of the proposed model for HEIs. The results confirm that the constructs that define the evaluation of HEIs in the developed model can be estimated. In the Conclusions section the conceptual relationship between the processes of management evaluation and the five subsystems that comprise it are shown. Subsequently, it is indicated that structural equation models based on confirmatory modeling strategy is a suitable statistical tool in validating the theoretical model, which was proposed in the framework of the research procedure. The impact of the model in Planning and Management indicates that this is a useful tool to complete the institutional assessment. Planning and institutional assessment processes are inherent in management philosophy. That is why its practice is recommended as necessary compliance in all functional and operational units of HEIs.
Resumo:
An exact treatment of adsorption from a one-dimensional lattice gas is used to eliminate and correct a well-known inconsistency in the Brunauer–Emmett–Teller (B.E.T.) equation—namely, Gibbs excess adsorption is not taken into account and the Gibbs integral diverges at the transition point. However, neither model should be considered realistic for experimental adsorption systems.
Resumo:
The equation ∂tu = u∂xx2u − (c − 1)(∂xu)2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water-absorbing fissurized porous rock; therefore, we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.
Resumo:
We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.
Resumo:
Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
On the numerical solution of a Cauchy problem in an elastostatic half-plane with a bounded inclusion
Resumo:
We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.
Resumo:
We consider the problem of reconstruction of the temperature from knowledge of the temperature and heat flux on a part of the boundary of a bounded planar domain containing corner points. An iterative method is proposed involving the solution of mixed boundary value problems for the heat equation (with time-dependent conductivity). These mixed problems are shown to be well-posed in a weighted Sobolev space.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
The merits of various numerical methods for the solution of the one and two dimensional heat conduction equation with a radiation boundary condition have been examined from a practical standpoint in order to determine accuracies and efficiencies. It is found that the use of five increments to approximate the space derivatives gives sufficiently accurate results provided the time step is not too large; further, the implicit backward difference method of Liebmann (27) is found to be the most accurate method. On this basis, a new implicit method is proposed for the solution of the three-dimensional heat conduction equation with radiation boundary conditions. The accuracies of the integral and analogue computer methods are also investigated.
Resumo:
We study the Cauchy problem for utt − ∆u + V (x)u^5 = 0 in 3–dimensional case. The function V (x) is positive and regular, in particular we are interested in the case V (x) = 0 in some points. We look for the global classical solution of this equation under a suitable hypothesis on the initial energy.
Resumo:
∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”