920 resultados para Carbon Steel
Resumo:
Binder's title.
Resumo:
"Producerh [i.e. Producers] of carbon, low and high alloy, heat and corrosion steel castings, high manganese castings, investment mold castings, shell mold castings, and tool steel castings are included."
Resumo:
Grain boundaries (GBs), particularly ferrite: ferrite GBs, of X70 pipeline steel were characterized using analytical electron microscopy (AEM) in order to understand its intergranular stress corrosion cracking (IGSCC) mechanism(s). The microstructure consisted of ferrite (alpha), carbides at ferrite GBs, some pearlite and some small precipitates inside the ferrite grains. The precipitates containing Ti, Nb, V and N were identified as complex carbo-nitrides and designated as (Ti, Nb, WC, N). The GB carbides occurred (1) as carbides along ferrite GBs, (2) at triple points, and (3) at triple points and extending along the three ferrite GBs. The GB carbides were Mn rich, were sometimes also Si rich, contained no micro-alloying elements (Ti, Nb, V) and also contained no N. It was not possible to measure the GB carbon concentration due to surface hydrocarbon contamination despite plasma cleaning and glove bag transfer from the plasma cleaner to the electron microscope. Furthermore, there may not be enough X-ray signal from the small amount of carbon at the GBs to enable measurement using AEM. However, the microstructure does indicate that carbon does segregate to alpha : alpha GBs during microstructure development. This is particularly significant in relation to the strong evidence in the literature linking the segregation of carbon at GBs to IGSCC. It was possible to measure all other elements of interest. There was no segregation at alpha : alpha GBs, in particular no S, P and N, and also no segregation of the micro-alloying elements, Ti, Nb and V. (C) 2003 Kluwer Academic Publishers.
Resumo:
The role of the resin type on the sintering of maraging steel with boron additions has been investigated. Two different resins were added to the steel mixture and their subsequent debinding was evaluated and sintering responses compared with that of a resin-free alloy. The two resins used, nylon and a mixture of phenolic resin and synthetic wax, possessed different debinding behaviour, with the latter causing significant carbon contamination of the parts. This caused the formation of a Ti-Mo carbide, depleting the matrix of these elements. Consequently, the microstructure consisted of the equilibrium Fe-Fe2B eutectic, as well as a Mo-rich boride. The liquid phase also appeared to contain significant amounts of carbon, which lowered the temperature at which the liquid formed, resulting in high density occurring at a much lower temperature. When nylon was used as the binder, a similar sintering response to the resin-free alloy was observed. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The aim Of this study was to develop a steel powder system for rapid tooling applications. The properties required are rapid densification, dimensional precision. high mechanical strength and corrosion resistance. To this end. the densification and microstructural development of a loose packed 200 grade maraging steel powder sintered with ferrophosphorous additions was examined. Liquid initially formed from a reaction of the Fe3P and carbon, which was a residue of the polymeric binder used to shape the powder compact. This liquid caused a burst of sintering which ceased as the liquid dissipated. On further heating, a phosphorous rich supersolidus liquid appeared at triple points and grain boundaries leading to rapid densification and a sintered density of 98%.
Resumo:
This work reports on a critical measurement to understand the intergranular stress corrosion cracking (IGSCC) of pipeline steels: the atom probe field ion microscope (APFIM) measurement of the carbon concentration at a grain boundary (GB). The APFIM measurement was related to the microstructure and to IGSCC observations. The APFIM indicated that the GB carbon concentration of X70 was similar to 10 at% or less, which correlated with a high resistance to IGSCC for X70. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fatigue crack growth tests have been carried out in a number of gaseous environments in order to assess their effects on the crack propagation resistance of BS 4360 grade 50EE, a weldable structural steel. Crack growth rates at 25 °C are up to 20 times higher in hydrogen than in air, but there is no effect when hydrogen is present as a 30% constituent of a simplified product gas (SPG). Indeed, crack growth rates in such a mixture are slightly lower than those measured in air, being comparable with those observed in an inert environment. The other gases present in the SPG are CO, CO2 and CH4, and it is probable that the carbon monoxide is responsible for nullifying the embrittling effects of hydrogen, by preferentially adsorbing on to the surface of the steel and thus blocking hydrogen entry. Experimental observations suggest that oxygen has the same effect when small quantities are allowed to diffuse into a non-flowing hydrogen environment around a propagating crack. The results are encouraging in terms of the suitability of conventional structural steels such as BS 4360 for gas plant applications. The gas mixtures present in such an environment would not have the severe detrimental effects on fatigue crack growth resistance which result from the presence of 'pure' hydrogen. © 1993.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Resumo:
Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.
Resumo:
This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.
Resumo:
This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.
Resumo:
This thesis is actually the composition of two separate studies aimed at further understanding the role of incomplete combustion products on atmospheric chemistry. The first explores the sensitivity of black carbon (BC) forcing to aerosol vertical location since BC has an increased forcing per unit mass when it is located above reflective clouds. We used a column radiative transfer model to produce globally-averaged values of normalized direct radiative forcing (NDRF) for BC over and under different types of clouds. We developed a simple column-weighting scheme based on the mass fractions of BC that are over and under clouds in measured vertical profiles. The resulting NDRF is in good agreement with global 3-D model estimates, supporting the column-weighted model as a tool for exploring uncertainties due to diversity in vertical distribution. BC above low clouds accounts for about 20% of the global burden but 50% of the forcing. We estimate maximum-minimum spread in NDRF due to modeled profiles as about 40% and uncertainty as about 25%. Models overestimate BC in the upper troposphere compared with measurements; modeled NDRF might need to be reduced by about 15%. Redistributing BC within the lowest 4 km of the atmosphere affects modeled NDRF by only about 5% and cannot account for very high forcing estimates. The second study estimated global year 2000 carbon monoxide (CO) emissions using a traditional bottom-up inventory. We applied literature-derived emission factors to a variety of fuel and technology combinations. Combining these with regional fuel use and production data we produced CO emissions estimates that were separable by sector, fuel type, technology, and region. We estimated year 2000 stationary source emissions of 685.9 Tg/yr and 885 Tg/yr if we included adopted mobile sources from EDGAR v3.2FT2000. Open/biomass burning contributed most significantly to global CO burden, while the residential sector, primarily in Asia and Africa, were the largest contributors with respect to contained combustion sources. Industry production in Asia, including brick, cement, iron and steel-making, also contributed significantly to CO emissions. Our estimates of biofuel emissions are lower than most previously published bottom-up estimates while our other fuel emissions are generally in good agreement. Our values are also universally lower than recently estimated CO emissions from models using top-down methods.
Resumo:
The use of adhesively bonded carbon fiber reinforced polymers (CFRP) is well established to repair metallic structural elements in the aerospace industry for more than three decades. Despite a few exceptions, this technology has yet not been exploited for the steel construction industry where there is a great need to rehabilitate old metallic bridges. For instance, in Europe more than 30% of the railway bridge stock operated for more than 100 years. These bridges are made of old mild steel or puddle iron that exhibits poor behaviour due to the quality of the material itself and degradation caused by the long-term loading or environmental effects. The modest results for Steel/CFRP joints obtained may be due to the type of adhesive used. In fact, most of the previous studies utilized brittle adhesives specially developed for concrete structures. Recent ductile adhesives that made for the automotive industry for metallic joints should be more appropriate. In this study, an experimental investigation on the behaviour of CFRP/steel adhesively bonded joints is presented. A comparison between brittle adhesives and ductile adhesives is conducted. The results show that the ductile adhesives achieve much higher performance than the brittle ones. The brittle adhesives provide more stiffness to the adhesive joint. In the specimens with the ductile adhesives, the failure pattern started by yielding the steel bars first then the adhesive joint which is promising since it can facilitate the design significantly if the steel yielding can be used as a design criterion. The main disadvantage of ductile adhesives is they are usually more expensive than brittle ones. In order to solve this issue, bi-adhesive joints, in which the joint is mainly made of (low cost) brittle adhesive and ductile adhesive in the stress concentration region, are proposed. The results revealed very high improvement up to the yielding strength of the steel bars and with a balanced stiffness.
Resumo:
The reinforcement methods used to restore or increase the bearing capacity of metal structures are based on the application of steel plates to be bolted or welded to the original structure, which can cause problems to the integrity of the original structure. These difficulties can be overcome with the introduction of fiber-reinforced composite materials. FRPs are characterized by high strength to weight ratio, and they are very resistant to corrosion. In this dissertation a cracked steel I-beam reinforced with Carbon Fiber-Reinforced Polymer will be studied by performing a numerical evaluation of the structure with the commercial Finite Element Method software ABAQUS. The crack propagation will be computed using XFEM, while the debonding of the reinforcement layer will be found by considering a cohesive contact interface between the beam and the CFRP plate. The results will show the efficiency of the strengthening method in increasing the load carrying capacity of the cracked beam, and in reducing the crack opening of the initial notch.