995 resultados para Ca-alginate oxygen diffusivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0-134.8 µmol mol-1 for the Fe/Ca and 1.68(±0.41) µmol mol-1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1sigma[Mn/Ca] = 0.35-2.07 µmol mol-1; 1sigma[Fe/Ca] = 93.9-188.4 µmol mol-1). The Mn/Ca ratios in the calcite were generally relatively low (2.21-9.93 µmol mol-1) but in the same magnitude and proportional to the surrounding pore waters (1.37-6.67 µmol mol-1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0-101.0 µmol mol-1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off northwest Africa is accomplished by oxygen transport across and along density surfaces, i.e. diapycnal and isopycnal oxygen supply. Here the diapycnal oxygen supply is investigated using a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: (i) a large-scale tracer release experiment, (ii) microstructure profiles, and (iii) shipboard?acoustic current measurements plus density profiles. From these measurements, the average diapycnal diffusivity in the studied depth interval from 150 to 500m is estimated to be 1×10**-5 m2 s**-1, with lower and upper 95% confidence limits of 0.8×10**-5 m2 s**-1 and 1.4×10**-5 m2 s**-1. Diapycnal diffusivity in this depth range is predominantly caused by turbulence, and shows no significant vertical gradient. Diapycnal mixing is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 µmol kg**-1 yr**-1 of oxygen is supplied via diapycnal mixing, contributing about one-third of the total demand. This oxygen which is supplied via diapycnal mixing originates from oxygen that has been laterally supplied within the upper CentralWater layer above the OMZ, and within the Antarctic Intermediate Water layer below the OMZ. Due to the existence of a separate shallow oxygen minimum at about 100m depth throughout most of the study area, there is no net vertical oxygen flux from the surface layer into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.