828 resultados para Bomb calorimeter
Resumo:
The low-temperature heat capacities of trifluoroacetamide were precisely determined with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 404 K. A solid-to-solid phase transition, a fusion and a phase transition from a liquid crystalline phase to fully liquid phase have been observed at the temperatures of 336.911+/-0.102, 347.622+/-0.094 and 388.896+/-0.160 K, respectively. The molar enthalpies of these phase transitions as well as the chemical purity of the substance were determined to be 5.576+/-0.004, 11.496+/-0.007, 1.340+/-0.005 kJ mol(-1) and 99.30 mol%, respectively, on the basis of the heat capacity measurements. The molar entropies of the three phase transitions were calculated to be 16.550+/-0.012, 33.071+/-0.029 and 3.447+/-0.027 J mol(-1) K-1, respectively. Further researches of the thermochemical properties for this compound have been carried out by means of TG and DSC techniques. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The heat capacities of two Al62.5Cu25Fe12.5 samples containing icosahedral quasicrystals and B2 related crystals respectively were measured with a high-precision automatic adiabatic calorimeter over the temperature range of 75-385 K. The heat capacities of both samples increase with temperature. At the low temperature range, the heat capacity of the quasicrystalline sample is higher than that of the B2 approximate. However, the heat capacity of the B2 sample becomes higher above 254.987 K. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Ultra-fine particle of Ni-B amorphous alloy was prepared by chemical reduction of Ni2+ with NaBH4 and characterized with TEM and XRD. The heat capacity and thermal stability were measured with a high-precision automatic adiabatic calorimeter and DTA. The upper limit of applied temperature of the substance was found to be 684 K for use as catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The heat capacities of crystalline and liquid n-hexatriacontane were measured with an automatic adiabatic calorimeter over the temperature range of 80-370 K. Two solid-to-solid phase transitions at the temperatures of 345.397 and 346.836 K, and a fusion at the temperature of 348.959 K have been observed. The enthalpies and entropies of these phase transitions as well as the chemical purity of the substance were determined on the basis of the heat capacity measurements. Thermal decomposition temperatures of the compound were measured by thermogravimetric analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The low temperature heat capacities of N-(2-cyanoethyl)aniline were measured with an automated adiabatic calorimeter over the temperature range from 83 to 353 K. The temperature corresponding to the maximum value of the apparent heat capacity in the fusion interval, molar enthalpy and entropy of fusion of this compound were determined to be 323.33 +/- 0.13 K, 19.4 +/- 0.1 kJ mol(-1) and 60.1 +/- 0.1 J K-1 mol(-1), respectively. Using the fractional melting technique, the purity of the sample was determined to be 99.0 mol% and the melting temperature for the tested sample and the absolutely pure compound were determined to be 323.50 and 323.99 K, respectively. A solid-to-solid phase transition occurred at 310.63 +/- 0.15 K. The molar enthalpy and molar entropy of the transition were determined to be 980 +/- 5 J mol(-1) and 3.16 +/- 0.02 J K-1 mol(-1), respectively. The thermodynamic functions of the compound [H-T - H-298.15] and [S-T - S-298.(15)] were calculated based on the heat capacity measurements in the temperature range of 83-353 K with an interval of 5 K. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molar heat capacities of ( S)-ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 370 K. Experimental heat capacities were fitted into a polynomial equation of heat capacities ( C-p,C- m) with reduced temperature ( X), [ X = f(T)]. The polynomial equations for ( S)-ibuprofen were C-p,C- m(s) = - 39.483 X-4 - 66. 649 X-3 + 95. 196 X-2 + 210. 84 X + 172. 98 in solid state and C-p,C- m(L) = 7. 191X(3) + 4. 2774 X-2 + 56. 365 X + 498. 5 in liquid state. The thermodynamic functions relative to the reference temperature of 298. 15 K, H-T - H-298.15 and S-T - S-298.15, were derived for the( S)-ibuprofen. A fusion transition at T-m = (324. 15 +/- 0. 02) K was found from the C-p - T curve. The molar enthalpy and entropy of the fusion transition were determined to be (18. 05 +/- 0. 31) kJ.mol(-1) and (55. 71 +/- 0. 95) J.mol(-1).K-1, respectively. The purity of the ( S)-ibuprofen was determined to be 99. 44% on the basis of the heat capacity measurement. Finally, the heat capacities of ( S)-ibuprofen and racemic ibuprofen were compared.
Resumo:
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
Resumo:
The low-temperature heat capacities of myclobutanil (C15H17CIN4) were precisely measured with an automated adiabatic calorimeter over the temperature range from 78 to 368 K. The sample was observed to melt at (348.800 +/- 0.06) K. The molar enthalpy and entropy of the melting as well as the chemical purity of the substance were determined to be Delta(fus)H(m) = (30931 +/- 11) J.mol(-1), Delta(fus)S(m) = (88.47 +/- 0.02) J.mol(-1).K-1 and 99.41%, respectively. Further research of the melting process for this compound was carried out by means of DSC technique. The result was in agreement with that obtained from the measurements of heat capacities.
Resumo:
Fenoxycarb was synthesized and its heat capacities were precisely measured with an automated adiabatic calorimeter over the temperature range from 79 to 360 K. The sample was observed to melt at (326.31 +/- 0.14) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (26.98 +/- 0.04) kJ-mol(-1), (82.69 +/- 0.09) J-K-1-mol(-1) and 99.53% +/- 0.01%, respectively. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (326.62 +/- 0.06) K. Further research on the melting process of this compound was carried out by means of differential scanning calorimetry technique. The result was in agreement with that obtained from the measurements of heat capacities.
Resumo:
Monografia apresentada à Universidade Fernando Pessoa para obtenção do grau Licenciada em Medicina Dentária
Resumo:
Purpose – Anisotropic conductive film (ACF) is now an attractive technology for direct mounting of chips onto the substrate as an alternative to lead-free solders. However, despite its various advantages over other technologies, it also has many unresolved reliability issues. For instance, the performance of ACF assembly in high temperature applications is questionable. The purpose of this paper is to study the effect of bonding temperatures on the curing of ACFs, and their mechanical and electrical performance after high temperature ageing. Design/methodology/approach – In the work presented in this paper, the curing degree of an ACF at different bonding temperatures was measured using a differential scanning calorimeter. The adhesion strength and the contact resistance of ACF bonded chip-on-flex assembly were measured before and after thermal ageing and the results were correlated with the curing degree of ACF. The ACF was an epoxy-based adhesive in which Au-Ni coated polymer particles were randomly dispersed. Findings – The results showed that higher bonding temperatures had resulted in better ACF curing and stronger adhesion. After ageing, the adhesion strength increased for the samples bonded at lower temperatures and decreased for the samples bonded at higher temperatures. ACF assemblies with higher degrees of curing showed smaller increases in contact resistance after ageing. Conduction gaps at the bump-particle and/or particle-pad interfaces were found with the help of scanning electron microscopy and are thought to be the root cause of the increase in contact resistance. Originality/value – The present study focuses on the effect of bonding temperatures on the curing of ACFs, and their adhesion strength and electrical performances after high temperature ageing. The results of this study may help the development of ACFs with higher heat resistance, so that ACFs can be considered as an alternative to lead-free solders.
Resumo:
Previous work has suggested that seasonal and inter-annual upwelling of deep, cold, radiocarbon depleted waters from the South Atlantic has caused variations in the reservoir effect (R) through time along the southern coast of Brazil. This work aims to examine the possible upwelling influence on the paleo-reservoir age of Brazilian surficial coastal waters based on paired terrestrial/marine samples obtained from archaeological remains. On the Brazilian coast there are hundreds of shell-middens built up by an ancient culture that lived between 6500 to 1500 years ago, but there are few located on open coast with a known upwelling influence. Three archaeological sites located in a large headland in Arraial do Cabo and Ilha de Cabo Frio, southeastern coast of Brazil with open ocean conditions and a well-known strong and large upwelling of the Malvinas/Falkland current were chosen for this study. The 14C age differences between carbonized seed and marine samples varied from 281 ± 44 to 1083 ± 51 14C yr. There are also significant age differences between carbonized seed samples (977 14C yr) and marine samples (200 and 228 14C yr) from the same archaeological layer that cannot be explained by a reservoir effect or an old-wood effect for charcoal. Therefore the present data from the southeastern Brazilian coast are inconclusive for identifying an upwelling effect on R. To do so it would be necessary to more precisely define the present-pre-bomb R in upwelling regions and to analyze paired marine/terrestrial samples that are contemporaneous beyond doubt.
Resumo:
In this short article I feature examples of the creative appropriation and transformation of a protest vehicle such as the petrol bomb. I show that the human imagination can create an aesthetics out of even the street protest, and can creatively carnivalise, play and translocate such practices and violent stances into the dance studio, the theatre, and even the everyday.
Resumo:
Current understanding of risk associated with low-dose radiation exposure has for many years been embedded in the linear-no-threshold (LNT) approach, based on simple extrapolation from the Japanese atomic bomb survivors. Radiation biology research has supported the LNT approach although much of this has been limited to relatively high-dose studies. Recently, with new advances for studying effects of low-dose exposure in experimental models and advances in molecular and cellular biology, a range of new effects of biological responses to radiation has been observed. These include genomic instability, adaptive responses and bystander effects. Most have one feature in common in that they are observed at low doses and suggest significant non-linear responses. These new observations pose a significant challenge to our understanding of low-dose exposure and require further study to elucidate mechanisms and determine their relevance.
Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction
Resumo:
Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.