3 resultados para Bomb calorimeter

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.

Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.

The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.

By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.

Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.

Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.

Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.

Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.

Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.

Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.

Amino acids in sediments may only be useful for geothermometry in a very general way.

A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.

Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.

The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.

A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.