941 resultados para Biology, Biostatistics|Hydrology
Resumo:
Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.
Resumo:
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.
Resumo:
Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.
Resumo:
The discovery of peptides encoded by what were thought to be non-coding – or 'junk' – regions of precursors to microRNA sequences reveals a new layer of gene regulation. These sequences may not be junk, after all.
Resumo:
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: •Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. •Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. •Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Resumo:
In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.
Resumo:
This unique and comprehensive collection investigates the challenges posed to intellectual property by recent paradigm shifts in biology. It explores the legal ramifications of emerging technologies, such as genomics, synthetic biology, stem cell research, nanotechnology, and biodiscovery. Extensive contributions examine recent controversial court decisions in patent law – such as Bilski v. Kappos, and the litigation over Myriad’s patents in respect of BRCA1 and BRCA2 – while other papers explore sui generis fields, such as access to genetic resources, plant breeders' rights, and traditional knowledge. The collection considers the potential and the risks of the new biology for global challenges – such as access to health-care, the protection of the environment and biodiversity, climate change, and food security. It also considers Big Science projects – such as biobanks, the 1000 Genomes Project, and the Doomsday Vault. The inter-disciplinary research brings together the work of scholars from Australia, Canada, Europe, the UK and the US and involves not only legal analysis of case law and policy developments, but also historical, comparative, sociological, and ethical methodologies. Intellectual Property and Emerging Technologies will appeal to policy-makers, legal practitioners, business managers, inventors, scientists and researchers.
Resumo:
With promises of improved medical treatments, greener energy and even artificial life, the field of synthetic biology has captured the public imagination and attracted significant government and commercial investment. This excitement reached a crescendo on 21 May 2010, when scientists at the J Craig Venter Institute in the United States announced that they had made a “self-replicating synthetic bacterial cell”. This was the first living cell to have an entirely human-made genome, which means that all of the cell’s characteristics were controlled by a DNA sequence designed by scientists. This achievement in biological engineering was made possible by combining molecular biotechnology, gene synthesis technology and information technology.
Resumo:
In this paper it is demonstrated how the Bayesian parametric bootstrap can be adapted to models with intractable likelihoods. The approach is most appealing when the semi-automatic approximate Bayesian computation (ABC) summary statistics are selected. After a pilot run of ABC, the likelihood-free parametric bootstrap approach requires very few model simulations to produce an approximate posterior, which can be a useful approximation in its own right. An alternative is to use this approximation as a proposal distribution in ABC algorithms to make them more efficient. In this paper, the parametric bootstrap approximation is used to form the initial importance distribution for the sequential Monte Carlo and the ABC importance and rejection sampling algorithms. The new approach is illustrated through a simulation study of the univariate g-and- k quantile distribution, and is used to infer parameter values of a stochastic model describing expanding melanoma cell colonies.
Resumo:
Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/).
Resumo:
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci6 and pathway analyses7, 8, 9—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Resumo:
In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models.
Resumo:
In the coastal region of central Queensland female red-spot king prawns, P. longistylus, and the western or blue-leg king prawns, P. latisulcatus, had high mean ovary weights and high proportions of advanced ovary development during the winter months of July and August of 1985 and 1986. On the basis of insemination, both species began copulating at the size of 26-27 mm CL, but P. longistylus matured and spawned at a smaller size than P. latisulcatus. Abundance of P. longistylus was generally three to four times greater than that of P. latisulcatus but the latter was subject to greater variation in abundance. Low mean ovary weight and low proportions of females with advanced ovaries were associated with the maximum mean bottom sea-water temperature (28.5ºC) for both species. Population fecundity indices indicated that peaks in yolk or egg production (a) displayed a similar pattern for both species, (b) varied in timing from year to year for both species and (c) were strongly influenced by abundance. Generally, sample estimates of abundance and commercial catch rates (CPUE) showed similar trends. Differences between the two may have been due to changes in targeted commercial effort in this multi-species fishery.
Resumo:
Metapenaeus endeavouri and M. ensis from coastal trawl fishing grounds off central Queensland, Australia, have marked seasonal reproductive cycles. Female M. endeavouri grew to a larger size than female M. ensis and occurred over a wider range of sites and depths. Although M. ensis was geographically restricted in distribution to only the shallowest sites it was highly abundant. Mating activity in these open thelycum species, indicated by the presence or absence of a spermatophore, was relatively low and highly seasonal compared with closed thelyeum shrimps. Seasonal variation in spermatophore insemination can be used as an independent technique to study spawning periodicity in open thelycum shrimps. Data strongly suggest an inshore movement of M. endeavouri to mature and spawn. This differs from most concepts of Penaeus species life cycles, but is consistent with the estuarine significance in the life cycle of Metapenaeus species. Monthly population fecundity indices suggest summer spawning for both species, which contrasts with the winter spawning of other shrimps from the same multispecies fishery.
Resumo:
This paper describes the fishery and reproductive biology for Linuparus trigonus obtained from trawl fishermen operating off Queensland’s east coast, Australia. The smallest mature female lobster measured 59.8 mm CL, however, 50% maturity was reached between 80 and 85 mm CL. Brood fecundity (BF) was size dependent and ranged between 19,287 and 100,671 eggs in 32 females from 59.8 to 104.3 mm CL. The relationship was best described by the power equation BF = 0.1107*CL to the power of 2.9241 (r to the power of 2 = 0:74). Egg size ranged from 0.96 to 1.12 mm in diameter (mean = 1:02 (+or-) 0:01 mm). Egg weight and size were independent of lobster size. Length frequencies displayed multi-modal distributions.The percentage of female to male lobsters was relatively stable for small size classes (30 to 70 mm CL; 50.0 to 63.6% females), but female proportions rose markedly between 75 and 90 mm (72.2 to 85.4%) suggesting that at the onset of sexual maturity female growth rates are reduced. In size classes greater than 95 mm, males were numerically dominant. A description of the L. trigonus fishery in Queensland is also detailed.