926 resultados para Biodegradable Polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of knotting and chirality on the shape of knotted polygons forming trefoil knots compared to unknotted polygons by aligning independent configurations along their principal inertial axes. While for six edge polygons forming trefoil knots the chiral knotted structure is revealed in the isodensity profiles, the distinct chiral signature of the trefoil is significantly diminished with 24 edges. We observe that as the number of edges in the polygons increases, the cumulative shapes of trefoil knots progressively approach the cumulative shapes for unknotted polygons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate the efficiency of carboxymethyl cellulose (CMC) and starch blends as carrier materials of rhizobial inoculants regarding their capacity to maintain viable cells and promote cowpea (Vigna unguiculata) nodulation. The experimental design adopted was completely randomized, with three replicates. Forty different compositions of carboxymethyl cellulose (CMC) with starch, compatibilized or not with different proportions of MgO or ZnO, were evaluated regarding their ability of maintaining rhizobial viable cells during the storage period of one month at room temperature, in an initial screening. Thereafter, selected inoculant carrier blends were evaluated regarding their ability to maintain viable rhizobial cells for a period of 165 days, and their performance as inoculant carriers was compared to a peat-based inoculant carrier under greenhouse conditions. Rhizobial cells were better maintained in blends containing 50-60% CMC. Compatibilizing agents did not increase survival of rhizobial cells for 30 days of storage. The cowpea nodulation of polymer blends was statistically the same of peat-based inoculants. CMC/starch polymer blends are efficient carriers to rhizobial inoculants for up to 165 days of storage, when compatibilized with MgO (1%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE We have previously shown that retinal stem cells (RSCs) can be isolated from the radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have a great capacity to renew and to generate a large number of neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, recent published results from our lab revealed that such cells have a poor integration and survival rate after grafting. The uncontrolled environment of a retina seems to prevent good integration and survival after grafting in vivo. To bypass this problem, we are evaluating the possibility of generating in vitro a hemi-retinal tissue before transplantation. METHODS RSC were expanded and cells passaged <10 were seeded in a solution containing poly-ethylene-glycol (PEG) polymer based hydrogels crosslinked with peptides that are chosen to be substrates for matrix metalloproteinases. Various doses of cross linkers peptides allowing connections between PEG polymers were tested. Different growth factors were studied to stimulate cell proliferation and differentiation. RESULTS Cells survived only in the presence of EGF and FGF-2 and generated colonies with a sphere shape. No cells migrated within the gel. To improve the migration and the repartition of the cells in the gels, the integrin ligand RGDSP was added into the gel. In the presence of FGF-2 and EGF, newly formed cell clusters appeared by cell proliferation within several days, but again no outspreading of cells was observed. No difference was even seen when the stiffness of the hydrogels or the concentration of the integrin ligand RGDSP were changed. However, our preliminary results show that RSCs still form spheres when laminin is entrapped in the gel, but they started to spread out having a neuronal morphology after around 2 weeks. The neuronal population was assessed by the presence of the neuronal marker b-tubulin-III. This differentiation was achieved after successive steps of stimulations including FGF-2 and EGF, and then only FGF-2. Glial cells were also present. Further characterizations are under process. CONCLUSIONS RSC can be grown in 3D. Preliminary results show that neuronal cell phenotype acquisition can be instructed by exogenous stimulations and factors linked to the gel. Further developments are necessary to form a homogenous tissue containing retinal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli luoda asiakaspalveluprosessin mittaristo päivittäisen operatiivisen toiminnan seuraamiseksi ja parantamiseksi. Tarkoituksena oli mitata tilaustoimitusketjun suorituskykyä sekä tutkia mahdollisia kehitys ja parannuskohteita. Työ tehtiin Borealis Polymers Oy:n Fenolin Liiketoimintayksikölle. Yhtiön käytössä on Balanced Scorecard KPI- mittaristo. Asiakaspalveluprosessin mittaristo luotiin BSC asiakasnäkökulman mukaisesti soveltuen yhtiön toimintaympäristöön ja tavoitteisiin. Mittariston tarkoituksena on täydentää KPI- mittareita keskittyen päivittäisen asiakaspalveluprosessin suorituskyvyn ja asiakastyytyväisyyden parantamiseen. Asiakaspalveluprosessia kuvaavia mittareita testattiin suorittamalla asiakastyytyväisyyskysely, joka käytännössä toteutettiin sähköpostitse tehtynä tyytyväisyysmittauksena. Mittauksella haluttiin selvittää asiakastyytyväisyyden taso, palvelun eritekijöiden suhteellinen tärkeys asiakkaille eli mitkä laadun tekijät ovat asiakkaille tärkeimmät sekä miten asiakas kokee Borealiksen asiakaspalvelun suhteessa kilpailijoihin. Asiakaspalvelukysely on osa yhtiön kuluen vuoden aikana tehtävää asiakastyytyväisyysselvitystä. Lisäksi työn tavoitteena oli luoda jatkuvan toiminnan seuraamiseksi tulevaisuutta varten mittarit asiakkaille tärkeimpien laadun tekijöiden seuraamiseksi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ ␲ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-active polymers are a class of smart materials commonly manufactured by mixing micron-sized iron particles in a rubber-like matrix. When cured in the presence of an externally applied magnetic field, the iron particles arrange themselves into chain-like structures that lend an overall anisotropy to the material. It has been observed through electron micrographs and X-ray tomographs that these chains are not always perfect in structure, and may have dispersion due to the conditions present during manufacturing or some undesirable material properties. We model the response of these materials to coupled magneto-mechanical loading in this paper using a probability based structure tensor that accounts for this imperfect anisotropy. The response of the matrix material is decoupled from the chain phase, though still being connected through kinematic constraints. The latter is based on the definition of a 'chain deformation gradient' and a 'chain magnetic field'. We conclude with numerical examples that demonstrate the effect of chain dispersion on the response of the material to magnetoelastic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilters degrade only a small fraction of the natural organic matter (NOM) contained in seawater which is the leading cause of biofouling in downstream processes. This work studies the effects of chemical additions on NOM biodegradation by biofilters. In this work, biofiltration of seawater with an empty bed contact time (EBCT) of 6 min and a hydraulic loading rate of 10 m h-1 reduces the biological oxygen demand (BOD7) by 8%, the dissolved organic carbon (DOC) by 6% and the UV absorbance at 254 nm (A254) by 7%. Different amounts of ammonium chloride are added to the seawater (up to twice the total dissolved nitrogen in untreated seawater) to study its possible effect on the removal of NOM by a pilot-scale biofilter. Seawater is amended with different amounts of easily biodegradable dissolved organic carbon (BDOC) supplied as sodium acetate (up to twice the DOC) for the same purpose. The results of this work reveal that the ammonium chloride additions do not significantly affect NOM removal and the sodium acetate is completely consumed by the biofiltration process. For both types of chemical additions, the BOD7, DOC and A254 in the outlet stream of the biofilter are similar to the values for the untreated control. These results indicate that this biofilter easily removes the BDOC from the seawater when the EBCT is not above 6 min. Furthermore, nitrogen does not limit the NOM biodegradation in seawater under these experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli selvittää organisaation ostopäätösprosessi, kun tuotteina ovat biohajoavat kasvo- ja kallokirurgian implantit. Ensin selvitettiin biohajoavien implanttien markkinapotentiaalia, biohajoavien materiaalien lisäksi implanttien valmistuksessa käytettäviä muita materiaaleja sekä implanteilta vaadittavia ominaisuuksia kirjallisuuden ja internetin sekä asiantuntijahaastatteluiden avulla. Kirjallisuuden avulla selvitettiin myös organisaatioiden ostopäätösprosessien yleisiä piirteitä ja vaiheita. Biohajoavien kasvo- ja kallokirurgian implanttien ostopäätösprosessia tutkittiin kirjallisen kyselytutkimuksen avulla, joka oli suunnattu alan asiantuntijoille Euroopassa, Yhdysvalloissa sekä Kanadassa. Tutkimuksessa selvitettiin mm. tärkeimpiä käytettävien implanttien materiaalivalintaan vaikuttavia kriteereitä, ostopäätösprosessiin osallistuvia organisaation jäseniä, sekä heidän roolejaan päätöksenteossa, implantteja koskevan informaation etsintää sekä ostopäätösprosessin vaiheita. Kirjallisuudesta, internetistä, asiantuntijahaastatteluista ja kyselytutkimuksesta saatu tieto koottiin vuokaaviomalliksi, joka kuvaa kasvo- ja kallokirurgian implanttien ostopäätösprosessia organisaatioissa. Lopuksi esitettiin myös ehdotuksia markkinointisuunnitelmaan sekä jatkotutkimusehdotukset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.