953 resultados para BRANCH-POINTS
Resumo:
The present study explores the statistical properties of a randomization test based on the random assignment of the intervention point in a two-phase (AB) single-case design. The focus is on randomization distributions constructed with the values of the test statistic for all possible random assignments and used to obtain p-values. The shape of those distributions is investigated for each specific data division defined by the moment in which the intervention is introduced. Another aim of the study consisted in testing the detection of inexistent effects (i.e., production of false alarms) in autocorrelated data series, in which the assumption of exchangeability between observations may be untenable. In this way, it was possible to compare nominal and empirical Type I error rates in order to obtain evidence on the statistical validity of the randomization test for each individual data division. The results suggest that when either of the two phases has considerably less measurement times, Type I errors may be too probable and, hence, the decision making process to be carried out by applied researchers may be jeopardized.
Resumo:
Audit report on the Iowa Judicial Branch for the year ended June 30, 2013
Resumo:
Report on the Iowa Judicial Branch – County Clerks of District Courts, a part of the State of Iowa, for the year ended June 30, 2013
Resumo:
This issue review analyzes recent activity related to the Judicial Branch budget. The Judicial Branch budget is 3 percent of the total state general fund budget and consists of 95 percent personnel costs and 5 percent non-personnel costs. As of August 31, 2010, 29 clerks-of-court offices are operating on a part-time basis with reduced public hours. The remaining 70 offices are closed for two hours a day, two days a week. From February 2009 through June 2010, there were 15 court closure days.
Resumo:
This issue review examines the change in the number of executive branch employees, supervisors and payroll between January 2011 and August 2012. In recent years, a variety of factors have encouraged a reduction in the number of state employees, salary adjustment that pays for contract-related salary and benefits increases has not been funded, limited departments' ability to pay increasing personnel costs. Early retirement packages have been offered, encouraging higher-paid employees to retire. Beginning in January 2011, the Governor set a goal of reducing the cost of state government by 15 percent, which could impact the number of employees.
Resumo:
Audit report on the City of West Branch, Iowa for the year ended June 30, 2014
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.