878 resultados para BEHAVIOR-CHANGE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low T-g component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-steady time domain method is developed for the prediction of dynamic behavior of a mooring system under the environmental disturbances, such as regular or irregular waves, winds and currents. The mooring forces are obtained in a static sense at each instant. The dynamic feature of the mooring cables can be obtained by incorporating the extended 3-D lumped-mass method with the known ship motion history. Some nonlinear effects, such as the influence of the instantaneous change of the wetted hull surface on the hydrostatic restoring forces and Froude-Krylov forces, are included. The computational results show a satisfactory agreement with the experimental ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we measure the impact of regulatory measures which affected the Spanish electricity wholesale market in the period 2002-2005. Our approach is based on the fact that regulation changes firms' incentives and therefore their market behavior. In the absence of any regulation firms would choose profit- maximizing prices on their residual demands so that the observed gap between optimal and actual prices provides a measure of the effect of regulation. Our results indicate that regulation has decreased wholesale prices considerably, but became less effective at the end of the sample period which explains the change of regulatory regime introduced in 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Young's modulus, stress-strain curves, and failure properties of glass bead-filled EPDM vulcanizates were studied under superposed hydrostatic pressure. The glass bead-filled EPDM was employed as a representation of composite systems, and the hydrostatic pressure controls the filler-elastomer separation under deformation. This separation shows up as a volume change of the system, and its infuence is reflected in the mechanical behavior as a reinforcing effect of variable degree.

The strain energy stored in the composite system in simple tension was calculated by introducing a model which is described as a cylindrical block of elastomer with two half spheres of filler on each end with their centers on the axis of the cylinder. In the derivation of the strain energy, assumptions were made to obtain the strain distribution in the model, and strain energy-strain relation for the elastomer was also assumed. The derivation was carried out for the case of no filler-elastomer separation and was modified to include the case of filler-elastomer separation.

The resulting strain energy, as a function of stretch ratio and volume of the system, was used to obtain stress-strain curves and volume change-strain curves of composite systems under superposed hydrostatic pressure.

Changes in the force and the lateral dimension of a ring specimen were measured as it was stretched axially under a superposed hydrostatic pressure in order to calculate the mechanical properties mentioned above. A tensile tester was used which is capable of sealing the whole system to carry out a measurement under pressure. A thickness measuring device, based on the Hall effect, was built for the measurement of changes in the lateral dimension of a specimen.

The theoretical and experimental results of Young's modulus and stress-strain curves were compared and showed fairly good agreement.

The failure data were discussed in terms of failure surfaces, and it was concluded that a failure surface of the glass-bead-filled EPDM consists of two cones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the qualitative macroscopic response. Finally, we examine the effect of adhesion on the frictional response as well as develop a force threshold model for adhesion and mode I interfacial cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular inputs necessary for cell behavior are vital to our understanding of development and disease. Proper cell behavior is necessary for processes ranging from creating one’s face (neural crest migration) to spreading cancer from one tissue to another (invasive metastatic cancers). Identifying the genes and tissues involved in cell behavior not only increases our understanding of biology but also has the potential to create targeted therapies in diseases hallmarked by aberrant cell behavior.

A well-characterized model system is key to determining the molecular and spatial inputs necessary for cell behavior. In this work I present the C. elegans uterine seam cell (utse) as an ideal model for studying cell outgrowth and shape change. The utse is an H-shaped cell within the hermaphrodite uterus that functions in attaching the uterus to the body wall. Over L4 larval stage, the utse grows bidirectionally along the anterior-posterior axis, changing from an ellipsoidal shape to an elongated H-shape. Spatially, the utse requires the presence of the uterine toroid cells, sex muscles, and the anchor cell nucleus in order to properly grow outward. Several gene families are involved in utse development, including Trio, Nav, Rab GTPases, Arp2/3, as well as 54 other genes found from a candidate RNAi screen. The utse can be used as a model system for studying metastatic cancer. Meprin proteases are involved in promoting invasiveness of metastatic cancers and the meprin-likw genes nas-21, nas-22, and toh-1 act similarly within the utse. Studying nas-21 activity has also led to the discovery of novel upstream inhibitors and activators as well as targets of nas-21, some of which have been characterized to affect meprin activity. This illustrates that the utse can be used as an in vivo model for learning more about meprins, as well as various other proteins involved in metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is an account of a cross-country study that covered Vietnam, Indonesia and the Philippines. Covering four sites (one each in Indonesia and Vietnam) and two sites in the Philippines, the study documented the impacts of three climate hazards affecting coastal communities, namely typhoon/flooding, coastal erosion and saltwater intrusion. It also analyzed planned adaptation options, which communities and local governments can implement, as well as autonomous responses of households to protect and insure themselves from these hazards. It employed a variety of techniques, ranging from participatory based approaches such as community hazard mapping and Focus Group Discussions (FGDs) to regression techniques, to analyze the impact of climate change and the behavior of affected communities and households.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the ontogenetic relationship between juvenile Steller sea lions (Eumetopias jubatus) and their foraging habitat is key to understanding their relationship to available prey and ultimately their survival. We summarize dive and movement data from 13 young-of-the-year (YOY) and 12 yearling Steller sea lions equipped with satellite dive recorders in the Gulf of Alaska and Aleutian Islands (n=18), and Washington (n=7) from 1994 to 2000. A total of 1413 d of transmission (x =56.5 d, range: 14.5–104.1 d) were received. We recorded 222,073 dives, which had a mean depth of 18.4 m (range of means: 5.8−67.9 m; SD=16.4). Alaska YOY dived for shorter periods and at shallower depths (mean depth=7.7 m, mean duration=0.8 min, mean maximum depth=25.7 m, and maximum depth=252 m) than Alaska yearlings (x =16.6 m, 0=1.1 min, x = 63.4 m, 288 m), whereas Washington yearlings dived the longest and deepest (mean depth=39.4 m, mean duration=1.8 min, mean maximum depth=144.5 m, and maximum depth=328 m). Mean distance for 564 measured trips was 16.6 km; for sea lions ≤10 months of age, trip distance (7.0 km) was significantly less than for those >10 months of age (24.6 km). Mean trip duration for 10 of the 25 sea lions was 12.1 h; for sea lions ≤10 months of age, trip duration was 7.5 h and 18.1 h for those >10 months of age. We identified three movements types: long-range trips (>15 km and >20 h), short-range trips (<15 km and <20 h) during which the animals left and returned to the same site, and transits to other haul-out sites. Long-range trips started around 9 months of age and occurred most frequently around the assumed time of weaning, whereas short-range trips happened almost daily (0.9 trips/day, n=426 trips). Transits began as early as 7 months of age, occurred more often after 9 months of age, and ranged between 6.5 and 454 km. The change in dive characteristics coincided with the assumed onset of weaning. These yearling sea lion movement patterns and dive characteristics suggest that immature Steller sea lions are as capable of making the same types of movements as adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.