960 resultados para Averaging Theorem
Resumo:
Justification logics are refinements of modal logics where modalities are replaced by justification terms. They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a single realization theorem that uniformly connects all the normal modal logics formed from the axioms \$mathsfd\$, \$mathsft\$, \$mathsfb\$, \$mathsf4\$, and \$mathsf5\$ with their justification counterparts. The proof employs cut-free nested sequent systems together with Fitting's realization merging technique. We further strengthen the realization theorem for \$mathsfKB5\$ and \$mathsfS5\$ by showing that the positive introspection operator is superfluous.
Resumo:
Some recent results of Khukhro and Makarenko on the existence of characteristic X-subgroups of finite index in a group G, for certain varieties X, are used to obtain generalisations of some well-known results in the literature pertaining to groups G, in which all proper subgroups satisfy some condition or other related to the property 'soluble-by-finite'. In addition, a partial generalisation is obtained for the aforementioned results on the existence of characteristic subgroups.
Resumo:
In 1970 Clark Benson published a theorem in the Journal of Algebra stating a congruence for generalized quadrangles. Since then this theorem has been expanded to other specific geometries. In this thesis the theorem for partial geometries is extended to develop new divisibility conditions for the existence of a partial geometry in Chapter 2. Then in Chapter 3 the theorem is applied to higher dimensional arcs resulting in parameter restrictions on geometries derived from these structures. In Chapter 4 we look at extending previous work with partial geometries with α = 2 to uncover potential partial geometries with higher values of α. Finally the theorem is extended to strongly regular graphs in Chapter 5. In addition we obtain expressions for the multiplicities of the eigenvalues of matrices related to the adjacency matrices of these graphs. Finally, a four lesson high school level enrichment unit is included to provide students at this level with an introduction to partial geometries, strongly regular graphs, and an opportunity to develop proof skills in this new context.
Resumo:
The aim of this note is to characterize all pairs of sufficiently smooth functions for which the mean value in the Cauchy mean value theorem is taken at a point which has a well-determined position in the interval. As an application of this result, a partial answer is given to a question posed by Sahoo and Riedel.
Resumo:
The Hasse-Minkowski theorem concerns the classification of quadratic forms over global fields (i.e., finite extensions of Q and rational function fields with a finite constant field). Hasse proved the theorem over the rational numbers in his Ph.D. thesis in 1921. He extended the research of his thesis to quadratic forms over all number fields in 1924. Historically, the Hasse-Minkowski theorem was the first notable application of p-adic fields that caught the attention of a wide mathematical audience. The goal of this thesis is to discuss the Hasse-Minkowski theorem over the rational numbers and over the rational function fields with a finite constant field of odd characteristic. Our treatments of quadratic forms and local fields, though, are more general than what is strictly necessary for our proofs of the Hasse-Minkowski theorem over Q and its analogue over rational function fields (of odd characteristic). Our discussion concludes with some applications of the Hasse-Minkowski theorem.
Resumo:
We analyze a model of 'postelection politics', in which (unlike in the more common Downsian models of 'preelection politics') politicians cannot make binding commitments prior to elections. The game begins with an incumbent politician in office, and voters adopt reelection strategies that are contingent on the policies implemented by the incumbent. We generalize previous models of this type by introducing heterogeneity in voters' ideological preferences, and analyze how voters' reelection strategies constrain the policies chosen by a rent-maximizing incumbent. We first show that virtually any policy (and any feasible level of rent for the incumbent) can be sustained in a Nash equilibrium. Then, we derive a 'median voter theorem': the ideal point of the median voter, and the minimum feasible level of rent, are the unique outcomes in any strong Nash equilibrium. We then introduce alternative refinements that are less restrictive. In particular, Ideologically Loyal Coalition-proof equilibrium also leads uniquely to the median outcome.
Resumo:
DeMoivre's theorem is of great utility in some parts of physical chemistry and is re-introduced here.
Resumo:
A one dimensional presentation of Ehrenfest's theorem is presented.