971 resultados para Automatic identification
Resumo:
This paper investigates the automatic atti- tude and depth control of a torpedo shaped submarine. Both experimental results and dynamic simulations are used to tune feed- back control loops in order to obtain stable control of yaw, pitch and roll of the craft.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
Service bundling can be regarded as an option for service providers to strengthen their competitive advantages, cope with dynamic market conditions and heterogeneous consumer demand. Despite these positive effects, actual guidance for the identification of service bundles and the act of bundling itself can be regarded as a gap. Previous research has resulted in a conceptualization of a service bundling method relying on a structured service description in order to fill this gap. This method addresses the reasoning about the suitability of services to be part of a bundle based on analyzing existing relationships between services captured by a description language. This paper extends the aforementioned research by presenting an initial set of empirically derived relationships between services in existing bundles that can subsequently be utilized to identify potential new bundles. Additionally, a gap analysis points out to what extent prominent ontologies and service description languages accommodate for the identified relationships.
Resumo:
In a resource constrained business world, strategic choices must be made on process improvement and service delivery. There are calls for more agile forms of enterprises and much effort is being directed at moving organizations from a complex landscape of disparate application systems to that of an integrated and flexible enterprise accessing complex systems landscapes through service oriented architecture (SOA). This paper describes the deconstruction of an enterprise into business services using value chain analysis as each element in the value chain can be rendered as a business service in the SOA. These business services are explicitly linked to the attainment of specific organizational strategies and their contribution to the attainment of strategy is assessed and recorded. This contribution is then used to provide a rank order of business service to strategy. This information facilitates executive decision making on which business service to develop into the SOA. The paper describes an application of this Critical Service Identification Methodology (CSIM) to a case study.
Resumo:
Police work tasks are diverse and require the ability to take command, demonstrate leadership, make serious decisions and be self directed (Beck, 1999; Brunetto & Farr-Wharton, 2002; Howard, Donofrio & Boles, 2002). This work is usually performed in pairs or sometimes by an officer working alone. Operational police work is seldom performed under the watchful eyes of a supervisor and a great amount of reliance is placed on the high levels of motivation and professionalism of individual officers. Research has shown that highly motivated workers produce better outcomes (Whisenand & Rush, 1998; Herzberg, 2003). It is therefore important that Queensland police officers are highly motivated to provide a quality service to the Queensland community. This research aims to identify factors which motivate Queensland police to perform quality work. Researchers acknowledge that there is a lack of research and knowledge in regard to the factors which motivate police (Beck, 1999; Bragg, 1998; Howard, Donofrio & Boles, 2002; McHugh & Verner, 1998). The motivational factors were identified in regard to the demographic variables of; age, sex, rank, tenure and education. The model for this research is Herzberg’s two-factor theory of workplace motivation (1959). Herzberg found that there are two broad types of workplace motivational factors; those driven by a need to prevent loss or harm and those driven by a need to gain personal satisfaction or achievement. His study identified 16 basic sub-factors that operate in the workplace. The research utilised a questionnaire instrument based on the sub-factors identified by Herzberg (1959). The questionnaire format consists of an initial section which sought demographic information about the participant and is followed by 51 Likert scale questions. The instrument is an expanded version of an instrument previously used in doctoral studies to identify sources of police motivation (Holden, 1980; Chiou, 2004). The questionnaire was forwarded to approximately 960 police in the Brisbane, Metropolitan North Region. The data were analysed using Factor Analysis, MANOVAs, ANOVAs and multiple regression analysis to identify the key sources of police motivation and to determine the relationships between demographic variables such as: age, rank, educational level, tenure, generation cohort and motivational factors. A total of 484 officers responded to the questionnaire from the sample population of 960. Factor analysis revealed five broad Prime Motivational Factors that motivate police in their work. The Prime Motivational Factors are: Feeling Valued, Achievement, Workplace Relationships, the Work Itself and Pay and Conditions. The factor Feeling Valued highlighted the importance of positive supportive leaders in motivating officers. Many officers commented that supervisors who only provided negative feedback diminished their sense of feeling valued and were a key source of de-motivation. Officers also frequently commented that they were motivated by operational police work itself whilst demonstrating a strong sense of identity with their team and colleagues. The study showed a general need for acceptance by peers and an idealistic motivation to assist members of the community in need and protect victims of crime. Generational cohorts were not found to exert a significant influence on police motivation. The demographic variable with the single greatest influence on police motivation was tenure. Motivation levels were found to drop dramatically during the first two years of an officer’s service and generally not improve significantly until near retirement age. The findings of this research provide the foundation of a number of recommendations in regard to police retirement, training and work allocation that are aimed to improve police motivation levels. The five Prime Motivational Factor model developed in this study is recommended for use as a planning tool by police leaders to improve motivational and job-satisfaction components of police Service policies. The findings of this study also provide a better understanding of the current sources of police motivation. They are expected to have valuable application for Queensland police human resource management when considering policies and procedures in the areas of motivation, stress reduction and attracting suitable staff to specific areas of responsibility.
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
In recent times, the improved levels of accuracy obtained by Automatic Speech Recognition (ASR) technology has made it viable for use in a number of commercial products. Unfortunately, these types of applications are limited to only a few of the world’s languages, primarily because ASR development is reliant on the availability of large amounts of language specific resources. This motivates the need for techniques which reduce this language-specific, resource dependency. Ideally, these approaches should generalise across languages, thereby providing scope for rapid creation of ASR capabilities for resource poor languages. Cross Lingual ASR emerges as a means for addressing this need. Underpinning this approach is the observation that sound production is largely influenced by the physiological construction of the vocal tract, and accordingly, is human, and not language specific. As a result, a common inventory of sounds exists across languages; a property which is exploitable, as sounds from a resource poor, target language can be recognised using models trained on resource rich, source languages. One of the initial impediments to the commercial uptake of ASR technology was its fragility in more challenging environments, such as conversational telephone speech. Subsequent improvements in these environments has gained consumer confidence. Pragmatically, if cross lingual techniques are to considered a viable alternative when resources are limited, they need to perform under the same types of conditions. Accordingly, this thesis evaluates cross lingual techniques using two speech environments; clean read speech and conversational telephone speech. Languages used in evaluations are German, Mandarin, Japanese and Spanish. Results highlight that previously proposed approaches provide respectable results for simpler environments such as read speech, but degrade significantly when in the more taxing conversational environment. Two separate approaches for addressing this degradation are proposed. The first is based on deriving better target language lexical representation, in terms of the source language model set. The second, and ultimately more successful approach, focuses on improving the classification accuracy of context-dependent (CD) models, by catering for the adverse influence of languages specific phonotactic properties. Whilst the primary research goal in this thesis is directed towards improving cross lingual techniques, the catalyst for investigating its use was based on expressed interest from several organisations for an Indonesian ASR capability. In Indonesia alone, there are over 200 million speakers of some Malay variant, provides further impetus and commercial justification for speech related research on this language. Unfortunately, at the beginning of the candidature, limited research had been conducted on the Indonesian language in the field of speech science, and virtually no resources existed. This thesis details the investigative and development work dedicated towards obtaining an ASR system with a 10000 word recognition vocabulary for the Indonesian language.
Mental computation : the identification of associated cognitive, metacognitive and affective factors