986 resultados para Asymptotic expansions.
Resumo:
We study the topology of a set naturally arising from the study of β-expansions. After proving several elementary results for this set we study the case when our base is Pisot. In this case we give necessary and sufficient conditions for this set to be finite. This finiteness property will allow us to generalise a theorem due to Schmidt and will provide the motivation for sufficient conditions under which the growth rate and Hausdorff dimension of the set of β-expansions are equal and explicitly calculable.
Resumo:
In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Esta dissertação se propõe ao estudo de inferência usando estimação por método generalizado dos momentos (GMM) baseado no uso de instrumentos. A motivação para o estudo está no fato de que sob identificação fraca dos parâmetros, a inferência tradicional pode levar a resultados enganosos. Dessa forma, é feita uma revisão dos mais usuais testes para superar tal problema e uma apresentação dos arcabouços propostos por Moreira (2002) e Moreira & Moreira (2013), e Kleibergen (2005). Com isso, o trabalho concilia as estatísticas utilizadas por eles para realizar inferência e reescreve o teste score proposto em Kleibergen (2005) utilizando as estatísticas de Moreira & Moreira (2013), e é obtido usando a teoria assintótica em Newey & McFadden (1984) a estatística do teste score ótimo. Além disso, mostra-se a equivalência entre a abordagem por GMM e a que usa sistema de equações e verossimilhança para abordar o problema de identificação fraca.
Resumo:
We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.
Resumo:
Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.
Resumo:
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.
Resumo:
The equilibrium dynamics of native and introduced blowflies is modelled using a density-dependent model of population growth that takes into account important features of the life-history in these flies. A theoretical analysis indicates that the product of maximum fecundity and survival is the primary determinant of the dynamics. Cochliomyia macellaria, a blowfly native to the Americas and the introduced Chrysomya megacephala and Chrysomya putoria, differ in their dynamics in that the first species shows a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species population numbers show a two-point limit cycle. Simulations showed that variation in fecundity has a marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dynamics.
Resumo:
An algorithm for deriving a continued fraction that corresponds to two series expansions simultaneously, when there are zero coefficients in one or both series, is given. It is based on using the Q-D algorithm to derive the corresponding fraction for two related series, and then transforming it into the required continued fraction. Two examples are given. (C) 2003 Elsevier B.V. All rights reserved.