924 resultados para Associative algebras
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
La tesi è dedicata allo studio delle rappresentazioni delle algebre di Lie semisemplici su un campo algebricamente chiuso di caratteristica zero. Mediante il teorema di Weyl sulla completa riducibilità, ogni rappresentazione di dimensione finita di una algebra di Lie semisemplice è scrivibile come somma diretta di sottorappresentazioni irriducibili. Questo permette di poter concentrare l'attenzione sullo studio delle rappresentazioni irriducibili. Inoltre, mediante il ricorso all'algebra inviluppante universale si ottiene che ogni rappresentazione irriducibile è una rappresentazione di peso più alto. Perciò è naturale chiedersi quando una rappresentazione di peso più alto sia di dimensione finita ottenendo che condizione necessaria e sufficiente perché una rappresentazione di peso più alto sia di dimensione finita è che il peso più alto sia dominante. Immediata è quindi l'applicazione della teoria delle rappresentazioni delle algebre di Lie semisemplici nello studio delle superalgebre di Lie, in quanto costituite da un'algebra di Lie e da una sua rappresentazione, dove viene utilizzata la tecnica della Z-graduazione che viene utilizzata per la prima volta da Victor Kac nello studio delle algebre di Lie di dimensione infinita nell'articolo ''Simple irreducible graded Lie algebras of finite growth'' del 1968.
Resumo:
In questa tesi abbiamo studiato le forme reali di algebre e superalgebre di Lie. Il lavoro si suddivide in tre capitoli diversi, il primo è di introduzione alle algebre di Lie e serve per dare le prime basi di questa teoria e le notazioni. Nel secondo capitolo abbiamo introdotto le algebre compatte e le forme reali. Abbiamo visto come sono correlate tra di loro tramite strumenti potenti come l'involuzione di Cartan e relativa decomposizione ed i diagrammi di Vogan e abbiamo introdotto un algoritmo chiamato "push the button" utile per verificare se due diagrammi di Vogan sono equivalenti. Il terzo capitolo segue la struttura dei primi due, inizialmente abbiamo introdotto le superalgebre di Lie con relativi sistemi di radici e abbiamo proseguito studiando le relative forme reali, diagrammi di Vogan e abbiamo introdotto anche qua l'algoritmo "push the button".
Resumo:
A uniform algebra A on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X) . It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain of pervasive subalgebras on X . (2) It is possible to find a compact Hausdorff space X such that there is an isomorphic copy of the lattice of all subsets of N in the family of pervasive subalgebras of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive, then it is maximal. (4) This fails if the word “strongly” is removed. We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras, and subalgebras of H∞(D), and develop new results that relate pervasiveness, maximality, and relative maximality to support sets of representing measures.
Resumo:
Learned irrelevance (LIrr) refers to a form of selective learning that develops as a result of prior noncorrelated exposures of the predicted and predictor stimuli. In learning situations that depend on the associative link between the predicted and predictor stimuli, LIrr is expressed as a retardation of learning. It represents a form of modulation of learning by selective attention. Given the relevance of selective attention impairment to both positive and cognitive schizophrenia symptoms, the question remains whether LIrr impairment represents a state (relating to symptom manifestation) or trait (relating to schizophrenia endophenotypes) marker of human psychosis. We examined this by evaluating the expression of LIrr in an associative learning paradigm in (1) asymptomatic first-degree relatives of schizophrenia patients (SZ-relatives) and in (2) individuals exhibiting prodromal signs of psychosis ("ultrahigh risk" [UHR] patients) in each case relative to demographically matched healthy control subjects. There was no evidence for aberrant LIrr in SZ-relatives, but LIrr as well as associative learning were attenuated in UHR patients. It is concluded that LIrr deficiency in conjunction with a learning impairment might be a useful state marker predictive of psychotic state but a relatively weak link to a potential schizophrenia endophenotype.
Resumo:
Vatne [13] and Green and Marcos [9] have independently studied the Koszul-like homological properties of graded algebras that have defining relations in degree 2 and exactly one other degree. We contrast these two approaches, answer two questions posed by Green and Marcos, and find conditions that imply the corresponding Yoneda algebras are generated in the lowest possible degrees.