956 resultados para Aluminum alloy 2524
Resumo:
The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by,magnesium alloys, and also of the environmental factors Of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service.
Resumo:
Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large pi-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large pi-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.
Resumo:
The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Additions of strontium to hypoeutectic aluminum-silicon alloys modify the morphology of the eutectic silicon phase from a coarse platelike structure to a fine fibrous structure. Thermal analysis, interrupted solidification, and microstructural examination of sand castings in this work revealed that, in addition to a change in silicon morphology, modification with strontium also causes an increase in the size of eutectic grains. The eutectic grain size increases because fewer grains nucleate, possibly due to poisoning of the phosphorus-based nucleants, that are active in the unmodified alloy. A simple growth model is developed to estimate the interface velocity during solidification of a eutectic grain. The model confirms, independent of microstructural observations, that the addition of 100 ppm strontium increases the eutectic grain size by at least an order of magnitude compared with the equivalent unmodified alloy. The model predicts that the growth velocity varies significantly during eutectic growth. At low strontium levels, these variations may be sufficient to cause transitions between flake and fibrous silicon morphologies depending on the casting conditions. The model can be used to rationally interpret the eutectic grain structure and silicon morphology of fully solidified aluminum-silicon castings and, when coupled with reliable thermal data, can be used to estimate the eutectic grain size.
Resumo:
Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallics between the die and the cast alloy. It is generally believed that close to 1% Fe is necessary in the aluminium alloy to reduce soldering. However, the role of iron in the interfacial reaction has not been studied in detail. In this investigation, reaction couples were formed between H13 tool steel substrates and an Al-11Si-2.5Cu melt containing either 0.15 or 0.60% Fe. Examination revealed distinctly different intermetallic layer morphology. The overall growth and chemistry of the reaction layer and the reaction rate measured by the consumption of the substrate were compared for the two alloy melts. It was demonstrated that a higher iron content reduces the rate of interfacial reaction, consistent with an observed thicker compact ( solid) intermetallic layer. Hence, the difference in reaction rate can be explained by a significant reduction in the diffusion flux due to a thicker compact layer. Finally, the mechanism of the growth of a thicker compact layer in the higher iron melt is proposed, based on the phase relations and diffusion both within and near the interfacial reaction zone. (C) 2004 Kluwer Academic Publishers.
Resumo:
The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the betaor Q phase, oriented along < 010 >. directions and theta' plates lying on {001}(alpha). planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al3Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB2 and AIB(2), the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al3Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB2 and AlB2. This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An aluminum-alloyed coating was applied onto the surface of magnesium alloy AZ91D. The coating formed in aluminium powder at 420 degrees C is rich in the beta (Mg17Al12) phase. Polarisation curve, AC impedance, salt immersion and salt spray were carried out to investigate the corrosion behaviour and assess the corrosion performance of the coated magnesium alloy. It was found that a coated AZ91D specimen was much more corrosion resistant and harder than an uncoated one. The improved corrosion resistance was mainly ascribed to the high volume fraction of beta phase in the coating. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The economical and environmental effects of mass reduction through Al and Mg primary alloys substitutions for cast iron and steel in automotive components are discussed using MF. Ashby's penalty functions method The viability of Mg alloy substitutions for existing Al alloy cast components is also considered. The cost analysis shows that direct, equal-volume, Al alloy substitutions for cast iron and steel are the most feasible in terms of the CAFE liability, followed by substitutions involving flat panels of prescribed stiffness. When the creation of CO2 associated to the production of Al and Mg is considered, the potential gasoline savings over the lifespan of the car compensate for the intrinsic environmental burden of Al in all applications, while electrolytic Mg substitutions for cast iron and steel are feasible for equal volume and panels only. Magnesium produced by the Pidgeon thermal process appears to be too primary energy intensive to be competitive in structural applications. Magnesium substitutions for existing Al alloy beams and panels are generally unviable. The current higher recycling efficiency of Al casting alloys confers Al a significant advantage over Mg alloys.
Resumo:
Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl2 and Cu9Al4 phases formed in the milling process, and the amount of CuAl2 phase increased while the Cu9Al4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al7Cu2Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.