972 resultados para Accademia di Francia (Rome, Italy)
Resumo:
This paper describes the experiences gained performing multiple experiments while developing a large autonomous industrial vehicle. Hot Metal Carriers (HMCs) are large forklift-type vehicles used in the light metals industry to move molten or hot metal around a smelter. Autonomous vehicles of this type must be dependable as they are large and potentially hazardous to infrastructure and people. This paper will talk about four aspects of dependability, that of safety, reliability, availability and security and how they have been addressed on our experimental autonomous HMC.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.
Resumo:
This paper describes ongoing work on a system using spatial descriptions to construct abstract maps that can be used for goal-directed exploration in an unfamiliar office environment. Abstract maps contain membership, connectivity, and spatial layout information extracted from symbolic spatial information. In goal-directed exploration, the robot would then link this information with observed symbolic information and its grounded world representation. We demonstrate the ability of the system to extract and represent membership, connectivity, and spatial layout information from spatial descriptions of an office environment. In the planned study, the robot will navigate to the goal location using the abstract map to inform the best direction to explore in.
Resumo:
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
Resumo:
Despite its rising success, interactive TV (iTV) has found very little attention in the field of HCI. Therefore, the aim of this paper is to investigate the usability of iTV services. It presents the results of a usability test and discusses the implications for further developments. The results show, that prior knowledge of Internet and mobile phones supports the usability of iTV services regarding navigation and text input, while the lack of it leads to great difficulties. Difficult tasks, such as writing a text message, had a success rate of only 20%, while guided tours proofed to be more usable with a success rate of 70%.
Resumo:
Query incentive networks capture the role of incentives in extracting information from decentralized information networks such as a social network. Several game theoretic tilt:Kids of query incentive networks have been proposed in the literature to study and characterize the dependence, of the monetary reward required to extract the answer for a query, on various factors such as the structure of the network, the level of difficulty of the query, and the required success probability.None of the existing models, however, captures the practical andimportant factor of quality of answers. In this paper, we develop a complete mechanism design based framework to incorporate the quality of answers, in the monetization of query incentive networks. First, we extend the model of Kleinberg and Raghavan [2] to allow the nodes to modulate the incentive on the basis of the quality of the answer they receive. For this qualify conscious model. we show are existence of a unique Nash equilibrium and study the impact of quality of answers on the growth rate of the initial reward, with respect to the branching factor of the network. Next, we present two mechanisms; the direct comparison mechanism and the peer prediction mechanism, for truthful elicitation of quality from the agents. These mechanisms are based on scoring rules and cover different; scenarios which may arise in query incentive networks. We show that the proposed quality elicitation mechanisms are incentive compatible and ex-ante budget balanced. We also derive conditions under which ex-post budget balance can beachieved by these mechanisms.
Resumo:
Factors influencing the effectiveness of democratic institutions and to that effect processes involved at the local governance level have been the interest in the literature, given the presence of various advocacies and networks that are context-specific. This paper is motivated to understand the adaptability issues related to governance given these complexities through a comparative analysis of diversified regions. We adopted a two-stage clustering along with regression methodology for this purpose. The results show that the formation of advocacies and networks depends on the context and institutional framework. The paper concludes by exploring different strategies and dynamics involved in network governance and insists on the importance of governing the networks for structural reformation through regional policy making.
Resumo:
The critical behaviour has been investigated in single crystalline Nd0.6Pb0.4MnO3 near the paramagnetic to ferromagnetic transition temperature (TC) by static magnetic measurements. The values of TC and the critical exponents β, γ and δ are estimated by analysing the data in the critical region. The exponent values are very close to those expected for 3D Heisenberg ferromagnets with short-range interactions. Specific heat measurements show a broad cusp at TC (i.e., exponent α<0) being consistent with Heisenberg-like behaviour.
Resumo:
Gadolinium iron garnet was milled in a high energy ball mill to study its magnetic properties in the nanocrystalline regime. XRD reveals the decomposition of the garnet phase into Gd-orthoferrite and Gd2O3 on milling. The variation of saturation magnetization and coercivity with milling is attributed to a possible shift in the compensation temperature on grain size reduction and an increase in the orthoferrite content. The Mössbauer spectrum at 16 K is characteristic of the magnetically ordered state corresponding to GdIG, GdFeO3 and α-Fe2O3 whereas at room temperature it is a superparamagnetic doublet.
Resumo:
We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.
Resumo:
In today's API-rich world, programmer productivity depends heavily on the programmer's ability to discover the required APIs. In this paper, we present a technique and tool, called MATHFINDER, to discover APIs for mathematical computations by mining unit tests of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code to compute the expression by mapping its subexpressions to API method calls. For each subexpression, MATHFINDER searches for a method such that there is a mapping between method inputs and variables of the subexpression. The subexpression, when evaluated on the test inputs of the method under this mapping, should produce results that match the method output on a large number of tests. We implemented MATHFINDER as an Eclipse plugin for discovery of third-party Java APIs and performed a user study to evaluate its effectiveness. In the study, the use of MATHFINDER resulted in a 2x improvement in programmer productivity. In 96% of the subexpressions queried for in the study, MATHFINDER retrieved the desired API methods as the top-most result. The top-most pseudo-code snippet to implement the entire expression was correct in 93% of the cases. Since the number of methods and unit tests to mine could be large in practice, we also implement MATHFINDER in a MapReduce framework and evaluate its scalability and response time.