959 resultados para AND-2A
Resumo:
Reaction of Bi2O3 with MgO, NiO, Co3O4 and Al2O3 gives rise to the corresponding ternary bismuth oxides, Bi18Mg8O36, Bi18Ni8O36, Bi20Co6O39 and Bi24Al2O39. These oxides have the general formula Bi26�xMxO40�y and exhibit BCC structures related to α - Bi2O3. In the first three solids, the metal ions, M, replace bismuth randomly at the octahedral 24r sites (space group 123); in the last case, aluminium ions occupy the tetrahedral 2a sites, the phase being isostructural with Bi24Ge2O40. Starting from Bi2O3 and NiO, orthorhombic Bi2Ni2O5 has also been obtained.
Resumo:
Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10-P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids.Interestingly, P10-P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.
Resumo:
Background and aims. Type 1 diabetes (T1D), an autoimmune disease in which the insulin producing beta cells are gradually destroyed, is preceded by a prodromal phase characterized by appearance of diabetes-associated autoantibodies in circulation. Both the timing of the appearance of autoantibodies and their quality have been used in the prediction of T1D among first-degree relatives of diabetic patients (FDRs). So far, no general strategies for identifying individuals at increased disease risk in the general population have been established, although the majority of new cases originate in this population. The current work aimed at assessing the predictive role of diabetes-associated immunologic and metabolic risk factors in the general population, and comparing these factors with data obtained from studies on FDRs. Subjects and methods. Study subjects in the current work were subcohorts of participants of the Childhood Diabetes in Finland Study (DiMe; n=755), the Cardiovascular Risk in Young Finns Study (LASERI; n=3475), and the Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) Study subjects (n=7410). These children were observed for signs of beta-cell autoimmunity and progression to T1D, and the results obtained were compared between the FDRs and the general population cohorts. --- Results and conclusions. By combining HLA and autoantibody screening, T1D risks similar to those reported for autoantibody-positive FDRs are observed in the pediatric general population. Progression rate to T1D is high in genetically susceptible children with persistent multipositivity. Measurement of IAA affinity failed in stratifying the risk assessment in young IAA-positive children with HLA-conferred disease susceptibility, among whom affinity of IAA did not increase during the prediabetic period. Young age at seroconversion, increased weight-for-height, decreased early insulin response, and increased IAA and IA-2A levels predict T1D in young children with genetic disease susceptibility and signs of advanced beta-cell autoimmunity. Since the incidence of T1D continues to increase, efforts aimed at preventing T1D are important, and reliable disease prediction is needed both for intervention trials and for effective and safe preventive therapies in the future. Our observations confirmed that combined HLA-based screening and regular autoantibody measurements reveal similar disease risks in pediatric general population as those seen in prediabetic FDRs, and that risk assessment can be stratified further by studying glucose metabolism of prediabetic subjects. As these screening efforts are feasible in practice, the knowledge now obtained can be exploited while designing intervention trials aimed at secondary prevention of T1D.
Resumo:
Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.
Resumo:
Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let $\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}$ and $\phi(S,G) = \{ v \in V -S: \exists u \in S$ , such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) = min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) = min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i. Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1. We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.
Resumo:
Hostility is a multidimensional construct having wide effects on society. In its different forms, hostility is related to a large array of social and health problems, such as criminality, substance abuse, depression, and cardiovascular risks. Identifying and tackling early-life factors that contribute to hostility may have public health significance. Although the variance in hostility is estimated to be 18-50 percent heritable, there are significant gaps in knowledge regarding the molecular genetics of hostility. It is known that a cold and unsupportive home atmosphere in childhood predicts a child s later hostility. However, the long-term effects of care-giving quality on hostility in adulthood and the role of genes in this association are unclear. The present dissertation is part of the ongoing population-based prospective Young Finns study, which commenced in 1980 with 3596 3-18-year-old boys and girls who were followed for 27 years. The specific aims of the dissertation were first to study the antecedents of hostility by looking at 1) the genetic background, 2) the early environmental predictors, and 3) the gene environment interplay behind hostility. As a second aim, the thesis endeavored to examine 4) the association between hostility and cardiovascular risks, and 5) the moderating effect of demographic factors, such as gender and socioeconomic status, on this association. The study found potential gene polymorphisms from chromosomes 7, 14, 17, and 22 suggestively associated with hostility. Of early environmental influences, breastfeeding and early care-giving were found to predict hostility in adulthood. In addition, a serotonin receptor 2A polymorphism rs6313 moderated the effect of early care-giving on later hostile attitudes. Furthermore, hostility was shown to predict cardiovascular risks, such as metabolic syndrome and inflammation. Finally, parental socioeconomic status was found to moderate the association between anger and early atherosclerosis. The new genetic and early environmental antecedents of hostility identified in this research may help in understanding the development of hostility and its health risks, and in planning appropriate prevention. The significance of early influences on this development is stressed. Although the markers studied are individual- and family-related factors, these may be influenced at the societal level by giving accurate information to all individuals concerned and by improving the societal circumstances.
Resumo:
The reaction of [Cu2(O2CMe)4(H2O)2] with N, N, N′, N′-tetramethylethane- 1,2-diamine (tmen) in ethanol yielded the dicopper(II) complex [Cu2(OH)(O2CMe)(tmen)2][ClO4]21. A similar reaction with N, N- dimethylethane- 1,2-diamine (dmen) afforded a crystalline product 2 in which two dicopper(II) complexes, [Cu2(OH)(O2CMe)(dmen)2][ClO4]22a and [Cu2(OH)(O2CMe)(H2O)2(dmen)2][ClO4]22b, are cocrystallized in a 1 : 1 molar ratio along with 2NaClO4. The crystal structures of 1 and 2 have been determined. The complexes have an asymmetrically dibridged [Cu2(µ-OH)(µ-O2CMe)]2+ core. The co-ordination geometry of the metal is square planar (CuO2N2). The copper atoms in 2b have a square-pyramidal CuO3N2 co-ordination sphere. The Cu Cu distances and Cu–O–Cu angles in 1, 2a and 2b are 3.339(2), 3.368(3), 3.395(7)Å, 120.1(2), 116.4(1) and 123.6(2)°, respectively. Complex 1 exhibits an axial ESR spectrum in a methanol glass giving g∥= 2.26 (A∥= 164 × 10–4 cm–1) and g⊥= 2.04. The ESR spectra obtained from the bulk material of the dmen product are indicative of the presence of two dimers, viz. complex 2a(g∥= 2.25, A∥= 165 × 10–4 cm–1; g⊥= 2.03) and 2b(g∥= 2.19, A∥= 184 × 10–4 cm–1; g⊥= 2.0). Variable-temperature magnetic susceptibility measurements on these complexes show an intramolecular antiferromagnetic coupling in the dimeric core. The fitting parameters are J=–27.8 cm–1, g= 2.1 for complex 1 and J=–10.1 cm–1, g= 2.0 for 2. The magnetostructural properties of the complexes are discussed. There is a linear correlation of the –2J values with the Cu Cu distances among dibridged complexes having square-planar copper(II) centres.
Resumo:
The reaction of fac-[Mo(CO)3(MeCN)3] with the unsymmetrical diphosphazane Ph2PN(iPr)P(Ph)(DMP) (L) gives the complex fac-[Mo(CO)3(MeCN)(L)] (2) in almost quantitative yield. The structure of the complex has been determined by an X-ray diffraction study. The compound reacts with PR3 (where R = Ph, OPh) to give fac-[Mo(CO)3(PR3)(L)] (3a, 4a), which undergoes an intramolecular isomerization to afford mer-[Mo(CO)3(PR3)(L)] (3b, 4b). Synthesis of cis-[Mo(CO)4(L)] (1) and fac-[MO(CO)3L] (2a) and their spectroscopic data are also reported.
Resumo:
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.
Resumo:
The reactions of As-chlorocyclotriphosphazane [EtNPCl], with phenols or trifluoroethanol yield the respective aryloxy- or trifluoroethoxy-containingX 3-cyclotriphosphazanes [EtNP(OR)]3 (R = C6H4Br-4 (2),C 6H5 (3C,6 H3-Mez-3,5 (4), C6H3Mez-2,6 (5), CH2CF3 (6)) as their cis-transisomericmixtures. The products have beencharacterized by IRand NMRspectroscopy. Thecrystalstructuresofboth thecis (2a) and trans(2b) isomer_softhep-bromophenoxy derivative have been determined by X-ray diffraction. Crystal data for 2a: triclinic, P1, a = 9.872(4) A, b = 13.438(6) A, c = 13.548(8) A, CY = 117.02(5)', 0 = 96.00(6)', y = 105.38(4)O, Z = 2, final R = 0.080. Crystal data for 2b: monoclinic, P21/n, a = 12.721(6) A, b = 13.468(7) A, c = 17.882(5) A, /3 = 101.62(3)O, Z = 4, final R = 0.066. The cis isomer exhibits a chair-triaxial conformation and the trans isomer a boat-triaxial conformation. Conformational preferences of X3-cyclotriphosphazanes have been probed by both MNDO and ab initio calculations on model systems [HNPXIp (X = H, F). In addition to vicinal lone pair repulsions, negative hyperconjugative interactions involving the nitrogen lone pairs and adjacent P-X Q* orbitals are found to be important (especially when X is an electronegative substituent) in determining the conformational preferences of X3-cyclotriphosphazanes. The calculations also show that the axial - equatorial conversion at phosphorus has a large activation barrier in these systems
Resumo:
Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.
Resumo:
The unsymmetrical diphosphazanes X2PN(Pr(i))PYY'(1a-1h) {X = Ph, YY' = O2 C6H4 (1a) or YY' = O2C12H8 (1b); X = Ph, Y = Ph, Y' = OC6H4Me-4 (1c), OC6H4Br-4 (1d), OC6H3Me2-3,5 (1e), OC5H4N-2 (1f), N2C3HMe2-3,5 (1g) or Cl (1h)} react with [M(CO)4(NHC5H10)2] (M = Mo, W) to yield the cis-chelate complexes [M(CO)4{X2PN(Pr(i)) PYY'}] {M = Mo (2a-2h); M = W (3-f,3-g)}. These complexes have been characterized by H-1, P-31 and C-13 NMR and IR spectroscopic studies.