882 resultados para ADEQUACY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Ciências da Educação (Avaliação em Educação), Universidade de Lisboa, Instituto de Educação, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino (Economia e Gestão/Contabilidade), Universidade de Lisboa, Instituto de Educação, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de projecto de mestrado, Ciências da Educação (Formação de Adultos), Universidade de Lisboa, Instituto de Educação, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Ensino de Artes Visuais, Universidade de Lisboa, 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Estatística e Investigação Operacional (Probabilidades e Estatística), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Educação (Didática da Matemática), Universidade de Lisboa, Instituto de Educação, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, Instituto de Educação, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Psicologia (Psicologia da Social), Universidade de Lisboa, Faculdade de Psicologia, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Psicologia (Psicologia do Desenvolvimento e Aconselhamento de Carreira), Universidade de Lisboa, Faculdade de Psicologia, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Cuidados Paliativos, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-03

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.