990 resultados para ADAPTIVE SIGNIFICANCE
Resumo:
Social resilience concepts are gaining momentum in environmental planning through an emerging understanding of the socio-ecological nature of biophysical systems. There is a disconnect, however, between these concepts and the sociological and psychological literature related to social resilience. Further still, both schools of thought are not well connected to the concepts of social assessment (SA) and social impact assessment (SIA) that are the more standard tools supporting planning and decision-making. This raises questions as to how emerging social resilience concepts can translate into improved SA/SIA practices to inform regional-scale adaptation. Through a review of the literature, this paper suggests that more cross-disciplinary integration is needed if social resilience concepts are to have a genuine impact in helping vulnerable regions tackle climate change.
Resumo:
This study examines the relationship between aesthetic and moral dimensions of postdramatic performance (PdP) with specific reference to two case studies: The Power of Theatrical Madness (1984) by Jan Fabre; and Inferno (2008) by Romeo Castellucci. These two cases were selected based on Lehmann's (1999/2006) "Postdramatic Theatre" theoretical framework by identifying various aspects of PdP: text, space, time, body and media. There are three primary objectives in this research project: (1) to examine if the selected works of PdP have moral functions; (2) identify these moral functions; and (3) establish a suitable framework to examine and assess the moral significance of the selected works.
Resumo:
A model of crosslinker unbinding is implemented in a highly coarsegrained granular model of F-actin cytoskeleton. We employ this specific granular model to study the mechanisms of the compressive responses of F-actin networks. It is found that the compressive response of F-actin cytoskeleton has dependency on the strain rate. The evolution of deformation energy in the network indicates that crosslinker unbinding events can induce the remodelling of F-actin cytoskeleton in response to external loadings. The internal stress in F-actin cytoskeleton can efficiently dissipate with the help of crosslinker unbinding, which could lead to the spontaneous relaxation of living cells.
Resumo:
Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems.
Resumo:
This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.
Resumo:
Nitrogen is an important nutrient that can impact the quality of aquatic environments when present in high concentration. Even though low concentration levels of ammonium-nitrogen have been observed in laboratory studies in bioretention basins, poor removal or even the production of nitrate-nitrogen within the filter is often recorded in such studies. Ten Perspex biofilter columns of 94 mm (internal diameter) were packed with a filter layer, transition layer and a gravel layer. While the filter layer was packed to a height of 800 mm, transition and gravel layers were packed to a composite height of 220 mm and operated with simulated stormwater in the laboratory. The filter layer contained 8% organic material by weight. A free board of 350 mm provided detention storage and head to facilitate infiltration. The columns were operated with different antecedent dry days (0 d to 21 d) and constant inflow concentration at a feed rate of 100 mL/min. Samples were collected from the outflow at different time intervals, between 2 min and 150 min from the start of outflow, and were tested for nitrate-nitrogen and total organic carbon. Washoff of organic carbon from the filter layer was observed to occur for 30 min of outflow. This indicated washoff of organic carbon from the filter itself. At the same time, a very low concentration of nitrate-nitrogen was recorded at the beginning of the outflow, indicating the effective removal of nitrate-nitrogen. We conclude that the removal of nitrate-nitrogen is insignificant during the wetting phase of a rainfall event and the process of denitrification is more pronounced during the drying phase of a rainfall event. Thus intermittent wetting and drying is crucial for the removal of nitrate-nitrogen in bioretention basins.
Resumo:
A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.
Resumo:
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Resumo:
The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.
Resumo:
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.