944 resultados para 3D object detection
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the tarte relative to other objects was varied, the ration of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying geometric reconstruction.
Resumo:
Recent work has suggested that for some tasks, graphical displays which visually integrate information from more than one source offer an advantage over more traditional displays which present the same information in a separated format. Three experiments are described which investigate this claim using a task which requires subjects to control a dynamic system. In the first experiment, the integrated display is compared to two separated displays, one an animated mimic diagram, the other an alphanumeric display. The integrated display is shown to support better performance in a control task, but experiment 2 shows that part of this advantage may be due to its analogue nature. Experiment 3 considers performance on a fault detection task, and shows no difference between the integrated and separated displays. The paper concludes that previous claims made for integrated displays may not generalize from monitoring to control tasks.
Resumo:
This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely, spread on smooth or fat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
Navigating cluttered indoor environments is a difficult problem in indoor service robotics. The Acroboter concept, a novel approach to indoor locomotion, represents unique opportunity to avoid obstacles in indoor environments by navigating the ceiling plane. This mode of locomotion requires the ability to accurately detect obstacles, and plan 3D trajectories through the environment. This paper presents the development of a resilient object tracking system, as well as a novel approach to generating 3D paths suitable for such robot configurations. Distributed human-machine interfacing allowing simulation previewing of actions is also considered in the developed system architecture.
Resumo:
This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a method for reconstructing 3D frontier points, contour generators and surfaces of anatomical objects or smooth surfaces from a small number, e. g. 10, of conventional 2D X-ray images. The X-ray images are taken at different viewing directions with full prior knowledge of the X-ray source and sensor configurations. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the number of viewing directions is fixed and the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The technique may be used not only in medicine but also in industrial applications.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
This paper describes the novel use of agent and cellular neural Hopfield network techniques in the design of a self-contained, object detecting retina. The agents, which are used to detect features within an image, are trained using the Hebbian method which has been modified for the cellular architecture. The success of each agent is communicated with adjacent agents in order to verify the detection of an object. Initial work used the method to process bipolar images. This has now been extended to handle grey scale images. Simulations have demonstrated the success of the method and further work is planned in which the device is to be implemented in hardware.
Resumo:
R. Benjamin (1995) addressed the application of the “object 3D” X ray reconstruction technique for electronically “unpacking” suspect items, when screening aircraft luggage. However, there is no satisfactory solution to the mass screening of hold luggage. Computed Tomography, CT, entails excessive radiation dosages, and its rate of throughput is quite inadequate. A novel variant of “object 3D” is therefore put forward, adapting some of the technology of existing cabin luggage screening systems-but on a substantially larger scale-which does achieve the required throughput at an acceptable radiation dosage and cost.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.