986 resultados para 31-300
Resumo:
Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.
Resumo:
Self-assembly of the building block [Cu(oxbe)](-) with Mn(II) led to a novel coordination polymer {[Cu(oxbe)]Mn(H2O)(Cu(oxbe)(DMF)]}(n).nDMF.nH(2)O, where H(3)oxbe is a new dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)-oxamido and DMF = dimethylformamide. The crystal forms in the triclinic system, space group P(1)over-bar, with a = 9.260(4) angstorm, b = 12.833(5) angstrom, c = 15.274(6) angstrom , alpha = 76.18(3)degrees, beta = 82.7(3)degrees, gamma = 82.31(3)degrees, and Z = 2. The crystal structure of the title complex reveals that the two-dimensional bimetallic layers are constructed of (CuMnII)-Mn-II-Cu-II chains linked together by carboxylate bridge and hydrogen bonds help to produce a novel three-dimensional channel-like structure. The magnetic susceptibility measurements (5-300 K) were analyzed by means of the Hamiltonian (H)over-cap = -2J(S)over-cap (Mn)((S)over-cap(Cu1) + (S)over-cap(Cu2)), leading to J = -17.4 cm(-1).
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
Ultra high molar mass polyethylene (UHPE) powder as polymerized in a slurry process has been studied, in its nascent state, after recrystallization on rapid cooling from the melt and after hot compression molding to a film, by DSC, effect of annealing the recrystallized specimen at 120 similar to 130 degreesC, morphology by polarizing optical microscopy and small angle X-ray scattering. Based on the experimental results obtained the macromolecular condensed state of the nascent UHPE powder is a rare case of a multi-chain condensed state of non-interpenetrating chains, involving interlaced extended chain crystalline layers and relaxed parallel chain amorphous layers. On melting, a nematic rubbery state of nanometer size domain resulted. The nematic-isotropic transition temperature was judged from literature data to be at least 220 degreesC, possibly higher than 300 degreesC, the exact temperature is however not sue because of chain degradation at such high temperatures. The recrystallization process from the melt is a crystallization from a nematic rubbery state. The drop of remelting peak temperature by 10 K of the specimen recrystallized from its melt as compared to the nascent state has its origin in the decrease both of the crystalline chain stem length and of the degree of crystallinity. The remelting peak temperature could be returned close to that of the nascent state by annealing at 120 similar to 130 degreesC.
Resumo:
为进一步应用LD31挤压铝合金,在该合金中加入了稀土元素,并对影响其耐磨性的工艺因素如电流密度、电解液浓度、氧化时间等进行了研究。试验结果表明,适量加入稀土元素可改善LD31铝合金氧化着色膜的耐磨性能。
Resumo:
在硫酸溶液中进行的阳极氧化,是铝材表面处理常用的一种工艺,得到的阳极氧化膜具有硬度高、耐磨性高、抗蚀性好等特点。目前国内外仍采用显微硬度计在膜的表面打压痕,以压痕大小来确定膜层硬度,然而硬度试验一般只限于少数经过特殊处理的硬质阳极氧化膜,而对于通常所见普通氧化膜不宜作硬度测定。普通氧化膜
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
本研究以中国对虾为材料,以杂交育种和选择育种为目标,进行了系统的中国对虾杂交育种试验、生长性状遗传参数试验及其分子遗传连锁图谱的构建工作。结果表明以不同地理群体杂交作为基础群体,然后采用系统的选择育种方法可以获得较好的选择效果。构建的遗传连锁图谱为中国对虾分子辅助育种提供一定的基础。这些试验结果为中国对虾合理系统的育种工作提供了理论基础和数据支持。其具体结果如下: 1. 试验对中国对虾黄渤海水域乳山湾群体(WYP)和朝鲜半岛南海群体(WKN)的2个群体及其杂交后代不同月龄生长情况和存活率进行了研究,测量体长(TL)、头胸甲长(CL)、头胸甲宽(CW)、第2、3腹节高(HST)、第2、3腹节宽(WST)、体重(BW)和存活率共7个性状,计算各项指标的杂种优势率,并对各性状进行了方差分析和多重比较。其3月龄生长情况和存活率研究结果表明,存活率在乳山湾群体(WYP♀)× 朝鲜半岛南海群体(WKN♂)杂交后代出现杂种劣势外,其他指标都表现出不同程度的杂种优势(4.37%~23.96% )。除了存活率外,杂交后代生长性状均显著高于亲本,乳山湾群体(WYP♀)×朝鲜半岛南海群体(WKN♂)杂交后代高于朝鲜半岛南海群体(WKN♀)× 乳山湾群体(WYP♂)杂交后代,黄渤海水域乳山湾群体高于朝鲜半岛南海群体后代。为确定测量性状与中国对虾体重的相关程度,建立了用体长(X1),头胸甲宽(X2),第2、3腹节宽(X3),头胸甲长(X4),第2、3腹节高(X5)估计体重的多元回归方程:Y = -2.056 + 0.03X1 + 0.076X2 + 0.078X3 + 0.033X4 + 0.043X5。 2. 中国对虾黄渤海水域乳山湾群体(WYP)和朝鲜半岛南海群体(WKN)2个群体及其杂交后代在4月龄时期的6个生长指标和存活率的杂种优势范围在0.514%到14.95%之间,WYP♀×WKN♂杂交后代在这7个指标中都高于WKN♀×WYP♂杂交后代。5月龄杂交后代也表现出一定程度的杂种优势,其范围在-9.000%~19.090%之间,但头胸甲长、第2、3腹节处高和存活率3个指标出现杂种劣势。不同杂交组合各个阶段生长发育情况和存活率在杂种优势表现出一定的规律。随着月龄的增加,WKN♀×WYP♂杂交后代杂种优势率有所增加,而WYP♀×WKN♂杂交后代的却有所降低。ANOVA分析结果表明,杂交后代在存活率方面与双亲差异不显著。4月龄的分析结果发现杂交后代在WST和BW这2个指标上存在显著差异。LSD多重比较结果显示,WYP♀×WKN♂杂交后代在BW指标上与亲本存在显著差异,在WST指标方面与其他3个组合的后代差异显著。5月龄的数据分析结果发现,杂交后代除体重存在显著差异外,其他各项指标差异均不显著。LSD多重比较结果发现,WKN♀×WYP♂杂交后代体重与其亲本WKN存在显著差异。 3. 对2个野生群体——朝鲜半岛南海岸群体(WKN)和黄渤海群体(WYP)和3个养殖群体——朝鲜半岛群体的养殖一代(FKN),黄海1号(HH1)和即抗98(JK98)进行杂交试验的研究,结果表明JK98 (♀) WKN (♂)组合在存活率方面最高,其余的依次为WYP (♀) WKN (♂),WKN (♀) WYP (♂),FKN (♀)HH1 (♂) 和 WYP (♀) FKN (♂)。而在体重方面FKN(♀) HH1(♂)组合最高,其余的依次为WKN (♀) WYP (♂),WYP (♀) WKN (♂),WYP (♀)FKN (♂) 和 JK98 (♀)WKN (♂)。在所有生长性状方面,JK98 (♀) WKN (♂)在5个组合中是最低的。方差检测结果表明,TL、CL、HST、LL和BW这5个指标在不同组合间存在差异,而其他指标不存在差异。多重比较结果发现JK98 (♀)WKN (♂)组合的TL与其他组合间差异极显著,HST指标与WKN (♀) WYP (♂),FKN(♀) HH1(♂)和 WYP (♀) WKN (♂)这3个组合差异显著,BW指标与WKN (♀) WYP (♂) 和 FKN(♀) HH1(♂)差异显著。 4. 通过人工授精的方法建立了中国对虾21个半同胞家系,测量了中国对虾21个半同胞(46个全同胞)家系的TL、CL、CW、HST、WST、第1腹节长(FL)、第6腹节长(LL)。利用MTDFREML软件得到生长性状遗传力在0.15~0.35之间,属于中度遗传力范围。TL的遗传力为0.34±0.071,CL的为0.30±0.070,CW为0.35±0.077,WST为0.33±0.073,HST为0.33±0.073,FL的最低为0.15±0.044,LL的为0.24±0.059。各个性状间表现出高的正相关,其中CW和TL以及HST的遗传相关最大,FL和WST的遗传相关最小。 通过以上杂交育种和选择育种的研究,认为单纯的依靠杂交育种来改善中国对虾的育种工作可能具有一定的局限性。所以在实际的育种过程中,以中国对虾不同群体的杂交后代作为基础群体,并以此为基础进行系统的选择育种应该具有更大的潜力。 5. 本试验利用中国对虾F2群体和AFLP分子标记技术进行了遗传连锁图谱的构建。利用55对AFLP引物组合对F2家系的110个个体进行了研究,结果检测到532个符合作图策略的AFLP标记。利用卡方检验检测分离位点是否符合孟德尔分离定律。对于符合3:1比例的分离位点利用F2自交模型构建性别平均连锁图谱,对于符合1:1比例的分离位点利用拟测交理论分别构建中国对虾的雌性和雄性遗传连锁图谱。雌性、雄性和性别平均遗传图谱分别有28、35和44个连锁群,图谱实际长度分别为1090、1617和1772.1 cM。中国对虾遗传连锁图谱估计基因组长度为2420 cM,符合与人类基因组相比的对虾类基因组长度。中国对虾雄性遗传连锁图谱比雌性遗传连锁图谱长32.6%,这可能说明中国对虾不同性别存在不同的重组率。通过皮尔逊相关系数检测认为AFLP标记在中国对虾图谱上分布均匀。本文利用AFLP标记构建的中国对虾遗传连锁图谱为中国对虾基因组研究和遗传改良提供一定的基础,同时也应该开发微卫星等共显性标记,为遗传连锁图谱的整合提供条件。
Resumo:
Aega sheni sp. nov. from Chinese and Australian waters, is described and figured. This species is characterized by the plate-like expansion of antennule peduncle articles 1 and 2, very large eyes (nearly making contact), numerous robust setae on the inferior margins of the ischium of pereopods 2 and 3, large distal lobe on the propodus of pereopods 1-3, shape and setation of the uropods, and the rounded pleotelson posterior margin. Aega sheni has been recorded at depths of 300-435 metres.
Resumo:
以青藏高原东北隅的西宁和海北(海拔分别为2 300 m和3 200 m)人工栽培唐古特山莨菪为材料,对两不同海拔地区间各叶层叶片光合色素含量和抗氧化酶活性等生理指标进行比较分析.结果显示:(1)生长在海北的唐古特山莨菪叶片厚度极显著高于西宁(P〈0.01),且两地区植物的叶片厚度从第1层到第4层均呈显著增加趋势;海北唐古特山莨菪叶片的叶绿素a、叶绿素b、总叶绿素、类胡萝卜素含量以及紫外吸收物质的含量均显著高于西宁地区(P〈0.05),从第1层到第4层,两地植株叶片的光合色素和紫外吸收物质的含量都呈降低的趋势,且两地区间差异显著;叶绿素a/b的层间差异显著(P〈0.05),但两海拔地区间差异不显著;类胡萝卜素/叶绿素比值海北高于西宁,从第1层到第4层叶片呈降低趋势.(2)生长于海北的唐古特山莨菪叶片组织中的SOD、CAT活性和MDA含量比西宁的高,POD、APX则相反;从第1层叶片到第4层,西宁和海北唐古特山莨菪叶片中的SOD活性显著增高(P〈0.05),但两地区各层间的CAT、POD、APX活性和MDA含量无明显的变化.研究表明,不同海拔对唐古特山莨菪叶片的生理特性有影响,同一海拔不同叶层叶片之间差异也较为明显;生长在高海拔地区的植物尽管表现出诸多生理适应特征,但膜系统依然有一定受损.
Resumo:
The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.
Resumo:
The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.