996 resultados para 205-1254


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"March 9, 2005."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Kaiser-Wilhelms-Universitat Strassburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DEC-205 (CD205) belongs to the macrophage mannose receptor family of C-type lectin endocytic receptors and behaves as an antigen uptake/processing receptor for dendritic cells (DC). To investigate DEC-205 tissue distribution in human leukocytes, we generated a series of anti-human DEC-205 monoclonal antibodies (MMRI-5, 6 and 7), which recognized epitopes within the C-type lectin-like domains 1 and 2, and the MMRI-7 immunoprecipitated a single similar to 200 kDa band, identified as DEC-205 by mass spectrometry. MMRI-7 and another DEC-205 mAb (MG38), which recognized the epitope within the DEC-205 cysteine-rich and fibronectin type II domain, were used to examine DEC-205 expression by human leukocytes. Unlike mouse DEC-205, which is reported to have predominant expression on DC, human DEC-205 was detected by flow cytometry at relatively high levels on myeloid blood DC and monocytes, at moderate levels on B lymphocytes and at low levels on NK cells, plasmacytoid blood DC and T lymphocytes. MMRI-7 F(ab')(2) also labeled monocytes, B lymphocytes and NK cells similarly excluding reactivity due to non-specific binding of the mAb to Fc gamma R. Tonsil mononuclear cells showed a similar distribution of DEC-205 staining on the leukocytes. DEC-205-specific semiquantitative immunoprecipitation/western blot and quantitative reverse transcriptase-PCR analysis established that these leukocyte populations expressed DEC-205 protein and the cognate mRNA. Thus, human DEC-205 is expressed on more leukocyte populations than that were previously assumed based on mouse DEC-205 tissue localization studies. The broader DEC-205 tissue expression in man is relevant to clinical DC targeting strategies and DEC-205 functional studies.