970 resultados para 13C-PLFA-GC-c-IRMS
Resumo:
Diatom assemblages from Holsteinsborg Dyb on the West Greenland shelf were analysed with high temporal resolution for the last 1200 years. A high degree of consistency between changes in frequency of selected diatom species and instrumental data from the same area during the last 70 years confirms the reliability of diatoms (particularly sea-ice species and warm-water species) for the study of palaeoceanographic changes in this area. A general cooling trend with some fluctuations is marked by an increase in sea-ice species throughout the last 1200 years. A relatively warm period with increased influence of Atlantic water masses of the Irminger Current (IC) is found at AD 750-1330, although with some oceanographic variability after AD 1000. A pronounced oceanographic shift occurred at AD 1330, corresponding in time to the transition from the so-called 'Medieval Warm Period' (MWP) to the 'Little Ice Age' (LIA). The LIA cold episode is characterized by three intervals with particularly cold sea-surface conditions at AD 1330-1350, AD 1400-1575 and AD 1660-1710 as a result of variable influence of Polar waters in the area. During the last 70 years, two relatively warm periods and one cold period (the early 1960s to mid-1990s) are indicated by changes in the diatom components. Our study demonstrates that sedimentary records on the West Greenland shelf provide valuable palaeoenvironment data that confirm a linkage between local and large-scale North Atlantic oceanographic and atmospheric oscillations.
Resumo:
Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.
Resumo:
Sediments of the Barbados Ridge complex, cored on DSDP Leg 78A, contain low concentrations of acid-insoluble carbon (0.05-0.25%) and nitrogen (C/N 1.5-5) and dispersed C1-C6 hydrocarbons (100-800 ppb). The concentrations of organic carbon and 13C in organic carbon decrease with depth, whereas the concentration of dispersed hydrocarbons increases slightly with depth. These trends may reflect the slow oxidation of organic matter, with selective removal of 13C and slow conversion of the residual organic matter to hydrocarbons. Very minor indications of nitrogen gas were observed at about 250 meters sub-bottom at two of the drilling sites. Basement basalts have calcite veins with d13C values in the range of 2.0 to 3.2 per mil and d18O-SMOW values ranging from 28.5 to +30.6 per mil. Interstitial waters have d18O-SMOW of 0.2 to -3.5 per mil and dD-SMOW of -2 to -15 per mil. The oxygen isotopic composition of the calcite veins in the basement basalts gives estimated equilibrium fractionation temperatures in the range of 11 to 24°C, assuming precipitation from water with d18O-SMOW in the range of +0.1 to -1.0 per mil. This suggests that basalt alteration and precipitation of vein calcite occurred in contact either with warmer Campanian seawater or, later, with pore water, after burial to depths of 200- 300 meters. Pore waters from all three sites are depleted in deuterium and 18O, and dissolved sulfate is enriched in 34S at Sites 541 and 542, but not at Site 543.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.
Resumo:
Quantitative characteristics for rates of diagenetic processes in the upper (0-30 cm) layer of sedimentary deposits in the area of the Spitsbergen (Svalbard) Archipelago (78°-80°N) were obtained by lithologo-geochemical, radioisotope (35S, 14C), and stable isotope (d34S, d13C) studies. It was proved that rates of diagenetic processes in polar deposits at 123-395 m depth affected by the East Spitsbergen ''warm'' current are mostly determined by bioproductivity and are commensurate with rates of processes in shelf deposits of temperate latitudes. High contents of migratory methane (up to 263 ml/dm**3) and isotopically-light organic carbon (Corg, d13C = -30 per mil PDB) were found in the 1 m layer of shelf deposits (at 123 m sea depth) with low bacterial in situ production of methane. It was shown that methane is not utilized in the deposits by the methanotrophic bacterial community and it may be supplied to the water mass and, probably, to the atmosphere.
Resumo:
Organic-geochemical bulk parameter (Total organic carbon contents, C/N ratios and d13Corg values), biogenic opal and biomarkers (n-alkanes, fatty acids, sterols and amino acids) were determined in surface sediments from the Ob and Yenisei estuaries and the adjacent southern Kara Sea. Maximum TOC contents were determined in both estuaries, reaching up to 3 %. Relatively high C/N ratios around 10, light d13Corg values of -26.5 per mil (Yenisei) and -28 to -28.7 per mil (Ob), and maximum concentrations of long-chain n-alkanes of up to about 10 µg/g Sed clearly show the predominance of terrigenous organic matter in the sediments from the estuaries. Towards the open Kara Sea, all p arameters indicate a decrease in terrigenous organic carbon. Brassicasterol as well as the short-chain n-alkanes parallel this trend, suggesting that these biomarkers are probably also related to a terrigenous (fresh-water phytoplankton) source. Amino acid spectra show characteristic trends from the Yenisei Estuary to the open Kara Sea revealing increasing state of degradation. Sedimentary organic matter in the Yenisei Estuary is relatively less degraded compared to the Ob Estuary and the open Kara Sea.
Resumo:
Gas hydrates represent one of the largest pools of readily exchangeable carbon on Earth's surface. Releases of the greenhouse gas methane from hydrates are proposed to be responsible for climate change at numerous events in geological history. Many of these inferred events, however, were based on carbonate carbon isotopes which are susceptible to diagenetic alterations. Here we propose a molecular fossil proxy, i.e., the "Methane Index (MI)", to detect and document the destabilization and dissociation of marine gas hydrates. MI consists of the relative distribution of glycerol dibiphytanyl glycerol tetraethers (GDGTs), the core membrane lipids of archaea. The rational behind MI is that in hydrate-impacted environments, the pool of archaeal tetraether lipids is dominated by GDGT-1, -2 and -3 due to the large contribution of signals from the methanotrophic archaeal community. Our study in the Gulf of Mexico cold-seep sediments demonstrates a correlation between MI and the compound-specific carbon isotope of GDGTs, which is strong evidence supporting the MI-methane consumption relationship. Preliminary applications of MI in a number of hydrate-impacted and/or methane-rich environments show diagnostic MI values, corroborating the idea that MI may serve as a robust indicator for hydrate dissociation that is useful for studies of global carbon cycling and paleoclimate change.
Resumo:
Early Triassic oceans were characterized by deposition of a number of "anachronistic facies", including microbialites, seafloor carbonate cement fans, and giant ooids. Giant ooids were particularly prevalent in Lower Triassic sections across South China and exhibit unusual features that may provide insights into marine environmental conditions following the end-Permian mass extinction. The section at Moyang (Guizhou Province) contains abundant giant ooids ranging in size between 2 and 6 mm (maximum 12 mm) and exhibiting various cortical structures, including regular, deformed, compound, regenerated and "domed". Preservation of ooid cortical structure is generally good as indicated by petrographic observations, and trace element and carbon isotope analyses suggest that diagenesis occurred in a closed diagenetic system. All ooids exhibit fine concentric laminae, frequently alternating between light-colored coarsely crystalline and dark-colored finely crystalline layers probably reflecting variation in organic content or original mineralogy. Under scanning electron microscope, biomineralized filaments or biofilms and tiny carbonate fluorapatite (CFA) crystals are commonly found in the finely crystalline layers. We infer that the precipitation of CFA was related to adsorption of P via microbial activity on the surfaces of ooids following episodic incursions of deep waters rich in carbon dioxide, hydrogen sulfide and phosphate into shallow-marine environments. Giant ooid precipitation may have been promoted in shallow ramp settings during these events by increased watermass agitation and supersaturation with respect to calcium carbonate, as well as reduced carbonate removal rates through biotic skeletal formation. Spatio-temporal distribution data reveal that giant ooids were widespread in the Tethyan region during the Early Triassic, and that they were most abundant immediately after the end-Permian crisis and disappeared gradually as metazoans repopulated marine environments.
Resumo:
Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.
Resumo:
Deep-sea sediment core FR1/97 GC-12 is located 990 mbsl in the northern Tasman Sea, southwest Pacific, where Antarctic Intermediate Water (AAIW) presently impinges the continental slope of the southern Great Barrier Reef. Analysis of carbon (d13C) and oxygen (d18O) isotope ratios on a suite of planktonic and benthic foraminifera reveals rapid changes in surface and intermediate water circulation over the last 30 kyr. During the Last Glacial Maximum, there was a large d13C offset (1.1 per mil) between the surface-dwelling planktonic foraminifera and benthic species living within the AAIW. In contrast, during the last deglaciation (Termination 1), the d13C(planktonic-benthic) offset reduced to 0.4 per mil prior to an intermediate offset (0.7 per mil) during the Holocene. We suggest that variations in the dominance and direction of AAIW circulation in the Tasman Sea, and increased oceanic ventilation, can account for the rapid change in the water column d13C(planktonic-benthic) offset during the glacial-interglacial transition. Our results support the hypothesis that intermediate water plays an important role in propagating climatic changes from the polar regions to the tropics. In this case, climatic variations in the Southern Hemisphere may have led to the rapid ventilation of deep water and AAIW during Termination 1, which contributed to the postglacial rise in atmospheric CO2.
Resumo:
This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.
Resumo:
Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10**4 cells cm**-3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.