1000 resultados para 090199 Aerospace Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Profesional Citation with address to Spatial Sciences Institution (Queensland) - Education and Professional Development Criteria; including Executive Summary, Teaching, Research, Publications Summary, Professional Service and Summary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listing of Asia-Pacific Award winners and award nomination documentation for APSEA education an professional development, includes acceptance speech and photos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management and staff of the spatial science program at QUT. Student numbers discussion, Alumni News, Staff and Laboratories moving, Work Integrated Learning in 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the validity of a Gabor filter bank for feature extraction of solder joint images on Printed Circuit Boards (PCBs). A distance measure based on the Mahalanobis Cosine metric is also presented for classification of five different types of solder joints. From the experimental results, this methodology achieved high accuracy and a well generalised performance. This can be an effective method to reduce cost and improve quality in the production of PCBs in the manufacturing industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social and psychological theories have provided a plethora of evidence showing that the physical difficulty to express appropriate social interactions between drivers expresses itself in aggression, selfish driving and anti-social behaviour. Therefore there is a need to improve interactions between drivers and allow clearer collective decision making between them. Personal characteristics and the driving situations play strong roles in driver’s aggression. Our approach is centered around the driving situation as opposed to focusing on personality characteristics. It examines aggression and manipulates contextual variables such as driver’s eye contact exchanges. This paper presents a new unobtrusive in-vehicle system that aims at communicating drivers’ intentions, elicit social responses and increasing mutual awareness. It uses eye gaze as a social cue to affect collective decision making with the view to contribute to safe driving. The authors used a driving simulator to design a case control experiment in which eye gaze movements are conveyed with an avatar. Participants were asked to drive through different types of intersections. An avatar representing the head of the other driver was displayed and driver behaviour was analysed. Significant eye gaze pattern difference where observed when an avatar was displayed. Drivers cautiously refer to the avatar when information is required on the intention of others (e.g. when they do not have the right of way). The majority of participants reported the perception of “being looked at”. The number of glances and time spent gazing at the avatar did not indicate an unsafe distraction by standards of in-vehicle device ergonomic design. Avatars were visually consulted primarily in less demanding driving situations, which underlines their non-distractive nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of these presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Achilles tendon has been seen to exhibit time-dependent conditioning when isometric muscle actions were of a prolonged duration, compared to those involved in dynamic activities, such as walking. Since, the effect of short duration muscle activation associated with dynamic activities is yet to be established, the present study aimed to investigate the effect of incidental walking activity on Achilles tendon diametral strain. Eleven healthy male participants refrained from physical activity in excess of the walking required to carry out necessary daily tasks and wore an activity monitor during the 24 h study period. Achilles tendon diametral strain, 2 cm proximal to the calcaneal insertion, was determined from sagittal sonograms. Baseline sonographic examinations were conducted at ∼08:00 h followed by replicate examinations at 12 and 24 h. Walking activity was measured as either present (1) or absent (0) and a linear weighting function was applied to account for the proximity of walking activity to tendon examination time. Over the course of the day the median (min, max) Achilles tendon diametral strain was −11.4 (4.5, −25.4)%. A statistically significant relationship was evident between walking activity and diametral strain (P < 0.01) and this relationship improved when walking activity was temporally weighted (AIC 131 to 126). The results demonstrate that the short yet repetitive loads generated during activities of daily living, such as walking, are sufficient to induce appreciable time-dependant conditioning of the Achilles tendon. Implications arise for the in vivo measurement of Achilles tendon properties and the rehabilitation of tendinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The internet infrastructure which supports high data rates has a major impact on the Australian economy and the world. However, in rural Australia, the provision of broadband services to an internet dispersed population over a large geographical area with low population densities remains both an economic and technical challenge [1]. Furthermore, the implementation of currently available technologies such as fibre-to-the-premise (FTTP), 3G, 4G and WiMAX seems to be impractical, considering the low population density that is distributed in a large area. Therefore, new paradigms and innovative telecommunication technologies need to be explored to overcome the challenges of providing faster and more reliable broadband internet services to internet dispersed rural areas. The research project implements an innovative Multi-User- Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSAMIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. Particularly, the abstract describes the development of a novel MUSA-MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-made to rural Australia for provisioning efficient wireless broadband communications.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses how internet services can be brought one step closer to the rural dispersed communities by improving wireless broadband communications in those areas. To accomplish this objective we describe the use of an innovative Multi-User-Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSA-MIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. This paper describes channel modelling techniques to characterise the MUSA-MIMO system allowing an effective deployment of this technology. Particularly, it describes the development of a novel MUSA MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-maid to rural Australia for provisioning efficient wireless broadband communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffraction tomographic imaging is applied to the imaging of shallowly buried targets with multi-bistatic arrays of transmitters and receivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parametric study was carried out to investigate the effects on reconstructed images from a ground penetrating radar (GPR) due to (a) the centre frequency of the GPR excitation pulse, (b) the height of transmitting and receiving antennas above ground level, and (c) the proximity of the buried objects. An integrated software package was developed to streamline the computer simulation based on synthetic data generated by GPRMax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.