962 resultados para wide angle scanning phased array


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A collaborative video with Avril Huddy where two viewpoints, performer and documenter, were presented simultaneously to investigate Arakawa and Gin’s notion of “boundary-swaying”. In this performance-work, the performer influences what the camera is able to capture by engaging the documenter in a form of improvised dance. The performer’s movements appear impulsive and unpredictable, testing ways for the documenter to frame the performer’s movement. The images revealed by the documenter’s camera reflect a complexity of moments and co-incidences, evoking a sense of the performer’s embodied thinking within improvised movement. While a second camera uses a conventional wide angle shot to document the unfolding of the performance-work and track the connection between the documenter and the performer. While the performance-work itself is still highly-experimental, the ideas underpinning this exploration suggest how future investigations integrating more sensitive technology such as motion capture and tracking devises may be investigated. This performance-work formed part of the Creative Response Exhibition curated by Alan Prohm, Bill Lavender and Jason Nelson and a peer-review committee as part of the proceedings of the AG3 Online: Third International Arakawa and Gins Architecture and Philosophy Conference, hosted by the Centre for Public Culture and Ideas at Griffith University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural protection against pests. Due to breeding, glycoalkaloid profile of the plant is affected. In addition, the starch properties in potato tubers can be affected as a result of breeding, because the crystalline properties are determined by the botanical source of the starch. Starch content and composition affect the texture of cooked and processed potatoes. In order to determine glycoalkaloid contents in Solanum species, simultaneous separation of glycoalkaloids and aglycones using reversed-phase high-performance liquid chromatography (HPLC) was developed. Clean-up of foliage samples was improved using a silica-based strong cation exchanger instead of octadecyl phases in solid-phase extraction. Glycoalkaloids alpha-solanine and alpha-chaconine were detected in potato tubers of cvs. Satu and Sini. The total glycoalkaloid concentration of non-peeled and immature tubers was at an acceptable level (under 20 mg/100 g of FW) in the cv. Satu, whereas concentration in cv. Sini was 23 mg/100 g FW. Solanum species (S. tuberosum, S. brevidens, S. acaule, and S. commersonii) and interspecific somatic hybrids (brd + tbr, acl + tbr, cmm + tbr) were analyzed for their glycoalkaloid contents using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The concentrations in the tubers of the brd + tbr and acl + tbr hybrids remained under 20 mg/100 g FW. Glycoalkaloid concentration in the foliage of the Solanum species was between 110 mg and 890 mg/100 g FW. However, the concentration in the foliage of S. acaule was as low as 26 mg/100 g FW. The total concentrations of brd + tbr, acl + tbr, and cmm + tbr hybrid foliages were 88 mg, 180 mg, and 685 mg/100 g FW, respectively. Glycoalkaloids of both parental plants as well as new combinations of aglycones and saccharides were detected in somatic hybrids. The hybrids contained mainly spirosolanes, and glycoalkaloid structures having no 5,6-double bond in the aglycone. Based on these results, the glycoalkaloid profiles of the hybrids may represent a safer and more beneficial spectrum of glycoalkaloids than that found in currently cultivated varieties. Starch nanostructure of three different cultivars (Satu, Saturna, and Lady Rosetta), a wild species S. acaule, and interspecific somatic hybrids were examined by wide-angle and small-angle X-ray scattering (WAXS, SAXS). For the first time, the measurements were conducted on fresh potato tuber samples. Crystallinity of starch, average crystallite size, and lamellar distance were determined from the X-ray patterns. No differences in the starch nanostructure between the three different cultivars were detected. However, tuber immaturity was detected by X-ray scattering methods when large numbers of immature and mature samples were measured and the results were compared. The present study shows that no significant changes occurred in the nanostructures of starches resulting from hybridizations of potato cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose can be used as a renewable raw material for energy production. The utilization requires degradation of cellulose into glucose, which can be done with the aid of enzymatic hydrolysis. In this thesis, various x-ray methods were used to characterize sub-micrometer changes in microcrystalline cellulose during enzymatic hydrolysis to clarify the process and factors slowering it. The methods included wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS) and x-ray microtomography. In addition, the samples were studied with transmission electron microscopy (TEM). The studied samples were hydrolyzed by enzymes of the Trichoderma reesei species for 6, 24, and 75 hours, which corresponded to 31 %, 58 %, and 68 % degrees of hydrolysis, respectively. Freeze-dried hydrolysis residues were measured with WAXS, SAXS and microtomography, whereas some of them were re-wetted for the wet SAXS and TEM measurements. The microtomography measurements showed a clear decrease in particle size in scale of tens of micrometers. In all the TEM pictures similar cylindrical and partly ramified structures were observed, independent of the hydrolysis time. The SAXS results were ambiguous and partly imprecise, but showed a change in the structure of wet samples in scale of 10-30 nm. According to the WAXS results, the degrees of crystallinity and the crystal sizes remained the same. The gained results support the assuption, that the cellulosic particles are hydrolyzed mostly on their surface, since the enzymes are unable to penetrate into the nanopores of wet cellulose. The hydrolysis therefore proceeds quickly in easily accessible particles and leaves the unaccesible particles almost untouched. The structural changes observed in the SAXS measurements might correspond to slight loosening of the microfibril aggregates, which was seen only in the wet samples because of their different pore structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of this study is to investigate composition of the crust in Finland using seismic wide-angle velocity models and laboratory measurements on P- and S-wave velocities of different rock types. The velocities adopted from wide-angle velocity models were compared with laboratory velocities of different rock types corrected for the crustal PT conditions in the study area. The wide-angle velocity models indicate that the P-wave velocity does not only increase step-wise at boundaries of major crustal layers, but there is also gradual increase of velocity within the layers. On the other hand, the laboratory measurements of velocities indicate that no single rock type is able to provide the gradual downward increasing trends. Thus, there must be gradual vertical changes in rock composition. The downward increase of velocities indicates that the composition of the crust becomes gradually more mafic with increasing depth. Even though single rock types cannot simulate the wide-angle model velocities, it can be done with a mixture of rock types. There are a large number of rock type mixtures giving the correct P-wave velocities. Therefore, the inverse solution of rock types and their proportions from velocities is a non-unique problem if only P-wave velocities is available. Amount of the possible rock type mixtures can be limitted using S-wave velocities, reflection seismic results and other geological and geophysical results of the study area. Crustal model FINMIX-2 is presented in this study and it suggest that the crustal velocity profiles can be simulated with rock type mixtures, where the upper crust consists of felsic gneisses and granitic-granodioritic rocks with a minor contribution of quartzite, amphibolite and diabase. In the middle crust the amphibolite proportion increases. The lower crust consists of tonalitic gneiss, mafic garnet granulite, hornblendite, pyroxenite and minor mafic eclogite. This composition model is in agreement with deep crustal kimberlite-hosted xenolith data in eastern Finland and reflectivity of the FIRE (Finnish Reflection Experiment). According to FINMIX-2 model the Moho is deeper and the crustal composition is a more mafic than an average global continental model would suggest. Composition models of southern Finland are quite similar than FINMIX-2 model. However, there are minor differencies between the models, which indicates areal differences of composition. Models of northern Finland shows that the crustal thickness is smaller than southern Finland and composition of the upper crust is different. Density profiles calculated from the lithological models suggest that there is practically no density contrast at Moho in areas of the high-velocity lower crust. This implies that crustal thickness in the central Fennoscandian Shield may have been controlled by the densities of the lower crustal and upper mantle rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differentiation of various types of soft tissues is of high importance in medical imaging, because changes in soft tissue structure are often associated with pathologies, such as cancer. However, the densities of different soft tissues may be very similar, making it difficult to distinguish them in absorption images. This is especially true when the consideration of patient dose limits the available signal-to-noise ratio. Refraction is more sensitive than absorption to changes in the density, and small angle x-ray scattering on the other hand contains information about the macromolecular structure of the tissues. Both of these can be used as potential sources of contrast when soft tissues are imaged, but little is known about the visibility of the signals in realistic imaging situations. In this work the visibility of small-angle scattering and refraction in the context of medical imaging has been studied using computational methods. The work focuses on the study of analyzer based imaging, where the information about the sample is recorded in the rocking curve of the analyzer crystal. Computational phantoms based on simple geometrical shapes with differing material properties are used. The objects have realistic dimensions and attenuation properties that could be encountered in real imaging situations. The scattering properties mimic various features of measured small-angle scattering curves. Ray-tracing methods are used to calculate the refraction and attenuation of the beam, and a scattering halo is accumulated, including the effect of multiple scattering. The changes in the shape of the rocking curve are analyzed with different methods, including diffraction enhanced imaging (DEI), extended DEI (E-DEI) and multiple image radiography (MIR). A wide angle DEI, called W-DEI, is introduced and its performance is compared with that of the established methods. The results indicate that the differences in scattered intensities from healthy and malignant breast tissues are distinguishable to some extent with reasonable dose. Especially the fraction of total scattering has large enough differences that it can serve as a useful source of contrast. The peaks related to the macromolecular structure come to angles that are rather large, and have intensities that are only a small fraction of the total scattered intensity. It is found that such peaks seem to have only limited usefulness in medical imaging. It is also found that W-DEI performs rather well when most of the intensity remains in the direct beam, indicating that dark field imaging methods may produce the best results when scattering is weak. Altogether, it is found that the analysis of scattered intensity is a viable option even in medical imaging where the patient dose is the limiting factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop practical and reliable x-ray scattering methods to study the nanostructure of the wood cell wall and to use these methods to systematically study the nanostructure of Norway spruce and Scots pine grown in Finland and Sweden. Methods to determine the microfibril angle (MFA) distribution, the crystallinity of wood, and the average size of cellulose crystallites using wide-angle x-ray scattering were developed and these parameters were determined as a function of the number of the year ring. The mean MFA in Norway spruce decreases rapidly as a function of the number of the year ring and after the 7th year ring it varies between 6° and 10°. The mean MFA of Scots pine behaves the same way as the mean MFA of Norway spruce. The thickness of cellulose crystallites for Norway spruce and Scots pine appears to be constant as a function of the number of the year ring. The obtained mean values are 32 Å for Norway spruce and 31 Å for Scots pine. The length of the cellulose crystallites was also quite constant as a function of the year ring. The mean length of the crystallites for Norway spruce was 364 Å, while the standard deviation was 27 Å. The mass fraction of crystalline cellulose in wood is the crystallinity of wood and the intrinsic crystallinity of cellulose is the crystallinity of cellulose. The crystallinity of wood increases from the 2nd year ring to the 10th year ring from the pith and is constant after the 10th year ring. The crystallinity of cellulose obtained using nuclear magnetic resonance spectroscopy was 52% for both species. The crystallinity of wood and the crystallinity of cellulose behave the same way in Norway spruce and Scots pine. The methods were also applied to studies on thermally modified Scots pine wood grown in Finland. Wood is modified thermally by heating and steaming in order to improve its properties such as biological resistance and dimensional stability. Modification temperatures varied from 100 °C to 240 °C. The thermal modification increases the crystallinity of wood and the thickness of cellulose crystallites but does not influence the MFA distribution. When the modification temperature was 230 °C and time 4 h, the thickness of the cellulose crystallites increased from 31 Å to 34 Å.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, H-1 and C-13 NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractograms and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DNIF, DMSO and a mixture of CHCl3 and acetone and they exhibit fairly good conductivity of similar to 3.0 x 10(-3) S cm(-1). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technical developments and advances that have taken place thus far are reviewed in those areas impacting future phased array active aperture radar systems. The areas covered are printed circuit antennas and antenna arrays, GaAs MMIC design and fabrication leading to affordable transmitter-receiver (T-R) modules, and novel hardware and software developments. The use of fiber-optic distribution networks to interconnect the monolithically integrated optical components with the T-R modules is discussed. Beamforming and sidelobe control techniques for active phased array systems are also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mulberry fiber (Bivoltine) and non-mulberry fiber (Tassar) were subjected to stress-strain studies and the corresponding samples were examined using wide angle X-ray scattering studies. Here we have two different characteristic stress-strain curves and this has been correlated with changes in crystallite shape ellipsoids in all the fibers. Exclusive crystal structure studies of Tassar fibers show interesting feature of transformation from antiparallel chains to parallel chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the Lamb wave type guided wave propagation in honeycomb core sandwich structures. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented that proves the potential of Lamb wave type guided wave for detection of damage in sandwich structures. A sandwich panel is fabricated with planar dimension of 600 mm x 600 mm, having a core thickness of 7 mm, cell size of 5 mm and 0.1 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense a frequency band limited guided wave with a central frequency. A linear phased array of piezoelectric patch actuators is used to achieve higher signal strength and directivity. Group velocity dispersion curves and corresponding frequency response of sensed signal are obtained experimentally. Linearity between the excitation signal amplitude and the corresponding sensed signal amplitude is found for certain range of parameters. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Indentation and low velocity impact induced damages of increasing diameter covering several honeycomb cells are created. Crushing of honeycomb core with rupture of face sheet is observed while introducing the damage. The damages are then detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. Monotonic changes in the sensor signal amplitude due to increase in the damage size has been established successfully. With this approach it is possible to locate and monitor the damages with the help of phased array and by tracking the wave packets scattered from the damages. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the environments of extended radio sources in the Australia Telescope Low-Brightness Survey (ATLBS). The radio sources were selected from the ATLBS Extended Source Sample, which is a well defined sample containing the most extended of radio sources in the ATLBS sky survey regions. The environments were analysed using 4-m Cerro-Tololo Inter-American Observatory Blanco telescope observations carried out for ATLBS fields in the Sloan Digital Sky Survey r(') band. We have estimated the properties of the environments using smoothed density maps derived from galaxy catalogues constructed using these optical imaging data. The angular distribution of galaxy density relative to the axes of the radio sources has been quantified by defining anisotropy parameters that are estimated using a new method presented here. Examining the anisotropy parameters for a subsample of extended double radio sources that includes all sources with pronounced asymmetry in lobe extents, we find good evidence for environmental anisotropy being the dominant cause for lobe asymmetry in that higher galaxy density occurs almost always on the side of the shorter lobe, and this validates the usefulness of the method proposed and adopted here. The environmental anisotropy parameters have been used to examine and compare the environments of Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II (FRII) radio sources in two redshift regimes (z < 0.5 and z > 0.5). Wide-angle tail sources and head-tail sources lie in the most overdense environments. The head-tail source environments (for the HT sources in our sample) display dipolar anisotropy in that higher galaxy density appears to lie in the direction of the tails. Excluding the head-tail and wide-angle tail sources, subsamples of FRI and FRII sources from the ATLBS appear to lie in similar moderately overdense environments, with no evidence for redshift evolution in the regimes studied herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various leg exercises have been recommended to prevent deep vein thrombosis (DVT), a condition where a blood clot forms in the deep veins, especially during long-haul flights. Accessing the benefit of each of these exercises in avoiding the DVT, which can be fatal, is important in the context of suggesting the correct and the most beneficial exercises. Present work aims at demonstrating the fiber Bragg grating (FBG)-based sensing methodology for measuring surface strains generated on the skin of the calf muscle to evaluate the suggested airline exercises to avoid DVT. As the dataset in the experiment involves multiple subjects performing these exercises, an inertial measurement unit has been used to validate the repetitiveness of each of the exercises. The surface strain on the calf muscle obtained using the FBG sensor, which is a measure of the calf muscle deformation, has been compared against the variation of blood velocity in the femoral vein of the thigh measured using a commercial electronic-phased array color Doppler ultrasound system. Apart from analyzing the effectiveness of suggested exercises, a new exercise which is more effective in terms of strain generated to avoid DVT is proposed and evaluated. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)