Macrodisco y glaucoma en individuos estudiados con tomografía óptica coherente


Autoria(s): Nova Avila, Gloria Nayibe
Contribuinte(s)

Belalcazar Rey, Sandra

Tovar, Jose Rafael

Data(s)

03/12/2012

Resumo

Introducción: El glaucoma representa la tercera causa de ceguera a nivel mundial y un diagnóstico oportuno requiere evaluar la excavación del nervio óptico que está relacionada con el área del mismo. Existen reportes de áreas grandes (macrodiscos) que pueden ser protectoras, mientras otros las asocian a susceptibilidad para glaucoma. Objetivo: Establecer si existe asociación entre macrodisco y glaucoma en individuos estudiados con Tomografía Optica Coherente (OCT ) en la Fundación Oftalmológica Nacional. Métodos: Estudio transversal de asociación que incluyó 25 ojos con glaucoma primario de ángulo abierto y 74 ojos sanos. A cada individuo se realizó examen oftalmológico, campo visual computarizado y OCT de nervio óptico. Se compararon por grupos áreas de disco óptico y número de macrodiscos, definidos según Jonas como un área de la media más dos desviaciones estándar y según Adabache como área ≥3.03 mm2 quien evaluó población Mexicana. Resultados: El área promedio de disco óptico fue 2,78 y 2,80 mm2 glaucoma Vs. sanos. De acuerdo al criterio de Jonas, se observó un macrodisco en el grupo sanos y según criterio de Adabache se encontraron ocho y veinticinco macrodiscos glaucoma Vs. sanos. (OR=0,92 IC95%=0.35 – 2.43). Discusión: No hubo diferencia significativa (P=0.870) en el área de disco entre los dos grupos y el porcentaje de macrodiscos para los dos grupos fue similar, aunque el bajo número de éstos no permitió concluir en términos estadísticos sobre la presencia de macrodisco y glaucoma.

Fundación Oftalmológica Nacional

Introduction: Glaucoma is the third leading cause of blindness worldwide and timely diagnosis requires evaluating the cup of the optic nerve which is related to the same area. There are reports of larger areas (macro discs) which can protective, while others associated with susceptibility to glaucoma. Purpose: To establish the association between macro disc and glaucoma in studied individuals with Optical Coherence Tomography (OCT) in the Fundación Oftalmológica Nacional. Methods: Cross-sectional association study that involved 25 eyes with primary open-angle glaucoma and 74 healthy eyes. Each individual had an eye examination, computerized visual field and optic nerve OCT. It was compared the optic disc areas and the macro discs number by groups according to Jonas as an area mean plus two standard deviations and according to Adabache as ≥3.03 mm2 who evaluated Mexican population. Results: The average area of the optic disc was 2,78 and 2,80 mm2 glaucoma Vs. healthy. Acording to Jonas criteria, it was observed a macro disc in the healthy group and according to Adabache criteria, it was found eight and twenty five macro discs glaucoma Vs. healthy. (OR=0,92 IC95%=0.35-2.43). Discussion: There was no significant difference (P=0,870) in the disc area between the two groups and the percentage of macro discs for both groups was similar, although the low number of these are not allowed to conclude in statistical terms the presence of macro disc and glaucoma.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/4091

Idioma(s)

spa

Publicador

Facultad de Medicina

Direitos

info:eu-repo/semantics/openAccess

Fonte

instname:Universidad del Rosario

reponame:Repositorio Institucional EdocUR

1. American Academy of Ophthalmology. Basic and Clinical Science Course 2011-2012. Glaucoma. Vol. 10. San Francisco: American Academy of Ophthalmology; 2011

2. Susanna R Jr, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr Opin Ophthalmol 2007; 18 (2): 122-128.

3. Fingeret M, Medeiros FA, Susanna R Jr, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 2005; 76 (11): 661-668.

4. Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 2009; 116 (12): 2294-2299.

5. Seider MI, Lee RY, Wang D, Pekmezci M, Porco TC, Lin SC et al. Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography. J Glaucoma 2009; 18 (8): 595-600.

6. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999; 43(4): 293-320.

7. Hoffmann EM, Zangwill LM, Crowston JG, Weinreb RN. Optic disk size and glaucoma. Surv Ophthalmol 2007; 52 (1): 32-49.

8. Chi T, Ritch R, Stickler D, Pitman B, Tsai C, Hsieh FY. Racial differences in optic nerve head parameters. Arch Ophthalmol 1989; 107 (6): 836-839.

9. Jonas JB, Schmidt AM, Müller-Bergh JA, Schlötzer-Schrehardt UM, Naumann GO. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992; 33(6): 2012-2018.

10. Jonas JB, Fernandez MC, Naumann GO. Correlations of the optic disc size to glaucoma susceptibility. Ophthalmology 1991; 98 (5): 675–680.

11. Zangwill LM, Weinreb RN, Beiser JA, Berry CC, Cioffi GA, Coleman AL et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Arch Ophthalmol 2005;123 (9): 1188-1197.

12. Adabache T.N, Muñoz C, Morales A. Optic Disk Size in Mexican Mestizo Population: Microdisk and Macrodisk Prevalence. Poster 2761-A547 of the Annual Meeting of Association for Research in Vision and Ophthalmology. For Sight: The Future of the Eye and Vision Research; 2010 May 2-6; Fort Lauderdale, United States of America. Association for Research in Vision and Ophthalmology; 2010.

13. Belalcazar S, Nova N, Valencia M. Macrodisco y Glaucoma en pacientes estudiados con OCT en la Fundación Oftalmológica Nacional. PP1386 del 29º Congreso Panamericano de Oftalmología; 2011 Julio 7-9; Buenos Aires, Argentina. Asociación Panamericana de Oftalmología; 2011.

14. Chang R, Budenz DL. New developments in optical coherence tomography for glaucoma. Curr Opin Ophthalmol 2008;19 (2): 127-135.

15. Kim E, Varma R. Glaucoma in Latinos/Hispanics. Curr Opin Ophthalmol 2010; 21(2): 100-105.

16. Zheng Y, Wong TY, Lamoureux E, Mitchell P, Loon SC, Saw SM et al. Diagnostic Ability of Heidelberg RetinaTomography in Detecting Glaucoma in a Population Setting: the Singapore Malay Eye Study. Ophthalmology 2010; 117 (2): 290-297.

17. Hoesl LM, Mardin CY, Horn FK, Juenemann AG, Laemmer R. Influence of glaucomatous damage and optic disc size on glaucoma detection by scanning laser tomography. J Glaucoma 2009; 18 (5): 385-389.

18. American Academy of Ophthalmology. Preferred Practice Pattern: Primary Open-Angle Glaucoma. San Francisco: American Academy of Ophthalmology; 2005.

19. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120 (6): 714-720.

20. Peng PH, Fu S, Nguyen N, Porco T, Lin SC. Optic Disc Size and Other Parameters From Optical Coherence Tomography in Vietnamese-Americans. J Glaucoma 2011; 20 (6): 355-360.

21. Uysal Y, Bayer A, Erdurman C, Kiliç S. Sensitivity and specificity of Heidelberg Retinal Tomography II parameters in detecting early and moderate glaucomatous damage: effect of disc size. Clin Experiment Ophthalmol 2007; 35 (2): 113-8.

22. American Academy of Ophthalmology. Preferred Practice Pattern: Primary Open-Angle Glaucoma Suspect. San Francisco: American Academy of Ophthalmology; 2005.

23. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120 (6): 701-713.

24. Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res 2000; 19 (1): 1-40.

25. Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J, Spaeth GL. Race, age, gender, and refractive error-related differences in the normal optic disc. Arch Ophthalmol 1994; 112 (8): 1068-1076.

26. Rao HL, Puttaiah NK, Babu JG, Maheshwari R, Senthil S, Garudadri CS. Agreement Among 3 Methods of Optic Disc Diameter Measurement. J Glaucoma 2010; 19 (9): 650-654.

27. Ramdas WD, van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA et al. A genome-wide association study of optic disc parameters. PLoS Genet 2010; 6 (6): 1-12.

28. Oliveira C, Harizman N, Girkin CA, Xie A, Tello C, Liebmann JM et al. Axial length and optic disc size in normal eyes. Br J Ophthalmol 2007; 91(1): 37-39.

29. Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Invest Ophthalmol Vis Sci 2006; 47 (3): 1008-1015.

30. Piantoni G, Martínez M. Examen del paciente y exámenes complementarios. Buenos Aires: Consejo Argentino de Oftalmología; 2008

31. Aref AA, Budenz DL. Spectral domain optical coherence tomography in the diagnosis and management of glaucoma. Ophthalmic Surg Lasers Imaging 2010; 41(6 Suppl): 15-27.

32. Mansoori T, Viswanath K, Balakrishna N. Correlation between peripapillary retinal nerve fiber layer thickness and optic nerve head parameters using spectral domain optical coherence tomography. J Glaucoma 2010; 19 (9): 604-608.

33. Gupta PK, Asrani S, Freedman SF, El-Dairi M, Bhatti MT. Differentiating glaucomatous from non-glaucomatous optic nerve cupping by optical coherence tomography. Open Neurol J 2011; 5: 1-7.

34. Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve. Clin Experiment Ophthalmol 2009; 37 (1): 90-99.

35. Duch T, Buchacra O. Tomografia de Coherencia Optica en Glaucoma [Publicaciones Thea]: Thea información; 2010.

36. Marsh BC, Cantor LB, WuDunn D, Hoop J, Lipyanik J, Patella VM et al. Optic nerve head (ONH) topographic analysis by stratus OCT in normal subjects: correlation to disc size, age, and ethnicity. J Glaucoma 2010; 19 (5): 310-318.

37. Leite MT, Rao HL, Weinreb RN, Zangwill LM, Bowd C, Sample PA et al. Agreement Among Spectral-Domain Optical Coherence Tomography Instruments for Assessing Retinal Nerve Fiber Layer Thickness. Am J Ophthalmol 2011; 151 (1): 85-91.

38. Schuman JS, Wollstein G, Farra T, Hertzmark E, Aydin A, Fujimoto JG et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol 2003; 135 (4): 504-512.

39. Mae O. Gordon, Michael A. Kass. The Ocular Hypertension Treatment Study: Design and Baseline Description of the Participants. Arch Ophthalmol 1999; 117 (5): 573-583.

TEME 0104 2012

Palavras-Chave #CEGUERA - DIAGNÓSTICO #CEGUERA - INVESTIGACIONES #ENFERMEDADES DE LOS OJOS - DIAGNÓSTICO #ENFERMEDADES DE LOS OJOS - INVESTIGACIONES #GLAUCOMA - DIAGNÓSTICO #GLAUCOMA - INVESTIGACIONES #TOMOGRAFÍA ÓPTICA #Optic disc size #Glaucoma #Optical coherence tomography #Retinal nerve fiber layer
Tipo

info:eu-repo/semantics/bachelorThesis

info:eu-repo/semantics/acceptedVersion