982 resultados para vertebre, anterior, wedge, fracture, FEM, LVDT, estensimetri


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resources of health systems are limited. There is a need for information concerning the performance of the health system for the purposes of decision-making. This study is about utilization of administrative registers in the context of health system performance evaluation. In order to address this issue, a multidisciplinary methodological framework for register-based data analysis is defined. Because the fixed structure of register-based data indirectly determines constraints on the theoretical constructs, it is essential to elaborate the whole analytic process with respect to the data. The fundamental methodological concepts and theories are synthesized into a data sensitive approach which helps to understand and overcome the problems that are likely to be encountered during a register-based data analyzing process. A pragmatically useful health system performance monitoring should produce valid information about the volume of the problems, about the use of services and about the effectiveness of provided services. A conceptual model for hip fracture performance assessment is constructed and the validity of Finnish registers as a data source for the purposes of performance assessment of hip fracture treatment is confirmed. Solutions to several pragmatic problems related to the development of a register-based hip fracture incidence surveillance system are proposed. The monitoring of effectiveness of treatment is shown to be possible in terms of care episodes. Finally, an example on the justification of a more detailed performance indicator to be used in the profiling of providers is given. In conclusion, it is possible to produce useful and valid information on health system performance by using Finnish register-based data. However, that seems to be far more complicated than is typically assumed. The perspectives given in this study introduce a necessary basis for further work and help in the routine implementation of a hip fracture monitoring system in Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture behavior of concrete–concrete interface is characterized using acoustic emission (AE). Beams of different sizes having jointed interface between two different strengths of concrete are tested. The results of load, displacement, CMOD, AE-events and AE-energy are analyzed. The width of fracture process zone and damage zone are computed using AE-data and are found to be independent of size. It is observed that, as the difference in compressive strength of concrete on either side of interface increases, the load carrying capacity, number of AE-events, AE-energy, width of fracture process zone and damage zone decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic method of JIc calculation using a single specimen is discussed. Dokouipil's approach for evaluating the JIc value is extended further and the effect of prestrain on rolled mild steel with significant inclusions is studied using this modified approach. Although this method does not give an accurate value of JIc, it is quite effective for a comparative study. While the fracture toughness of annealed and 7% prestrained materials are about the same, the fracture toughness of 3% prestrained material is significantly lower.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.