943 resultados para transit system performance
Resumo:
ABSTRACTThis study presents a contribution to the modeling of a computer application employing a method of serviceability performance for unpaved roads, aiming the management of maintenance/restoration activities of the primary surface layer. The proposed methodology consisted of field inspections during dry (April to September) and rainy (October to March) periods, during which objective evaluations were performed to survey of defects and their densities and degrees of severity. To aid the functional classification of analyzed road sections and the determination of the defect with major influence on the serviceability of these roads, the method of serviceability performance proposed by Silva (2009)was implemented in the Visual Basic for Applications (VBA) language in Microsoft Excel software. With the use of the computer application proposed it was possible to identify among the defects analyzed in field, through the index of serviceability of the sampling unit per defect type (ISUdef), which one had the greatest influence on determining the relative serviceability index per road section (IST). The results allow us to conclude that the computer application Road achieved satisfactory results, since the objective evaluation criteria applied to road sections denotes consistency regarding their serviceability.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
This paper presents the kinematic study of robotic biped locomotion systems. The main purpose is to determine the kinematic characteristics and the system performance during walking. For that objective, the prescribed motion of the biped is completely characterised in terms of five locomotion variables: step length, hip height, maximum hip ripple, maximum foot clearance and link lengths. In this work, we propose four methods to quantitatively measure the performance of the walking robot: energy analysis, perturbation analysis, lowpass frequency response and locomobility measure. These performance measures are discussed and compared in determining the robustness and effectiveness of the resulting locomotion.
Resumo:
Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
Tutkimuksen aiheena on strateginen suorituskykymittaristo ja sen implementointi. Muuttuva liiketoimintaympäristö on tuonut mukanaan sen, että yritysten tulee jatkuvasti päivittää toimintastrategiaansa sekä niihin liittyviä suorituskykymittareita. Strategiset suorituskykymittaristot ovat johdon työväline konkretisoida organisaation toiminnan tavoitteet ja menestystekijät alaspäin erilaisiksi mittareiksi. Tutkimuksen tavoitteena on tunnistaa haasteita, joita suorituskykymittariston käyttöönottoon liittyy ja keinoja, joilla näihin voidaan varautua. Tutkielma on laadullinen tutkimus, jossa tehtiin yrityshaastatteluja. Tutkimuksessa muodostettiin olemassa olevia teorioita mukaillen vaihemalli siitä, mitä osa-alueita strategisen suorituskykymittariston implementointiprojektiin liittyy. Tätä mallia käytettiin pohjana työn empiirisessä analyysissä. Empiirisessä analyysissä käyttöönoton onnistumisen edellytyksiksi havaittiin johdon aktiivinen rooli sekä riittävän viestinnän toteutus. Lisäksi onnistumiseen vaikuttavina tekijöinä korostuivat niin projektinhallinnalliset asiat, esimerkiksi aktiivinen projektipäällikkö, projektin organisointi ja toimintasuunnitelma jatkolle, kuin niiden henkilöiden rooli, jotka projektissa ovat mukana. Tutkimuksen lopputulokset myötäilevät aiempia tutkimuksia siinä, että viestinnällä ja kommunikaatiolla on hyvin merkittävä rooli mittariston käyttöönoton onnistumisessa.
Resumo:
In recent years, technological advancements in microelectronics and sensor technologies have revolutionized the field of electrical engineering. New manufacturing techniques have enabled a higher level of integration that has combined sensors and electronics into compact and inexpensive systems. Previously, the challenge in measurements was to understand the operation of the electronics and sensors, but this has now changed. Nowadays, the challenge in measurement instrumentation lies in mastering the whole system, not just the electronics. To address this issue, this doctoral dissertation studies whether it would be beneficial to consider a measurement system as a whole from the physical phenomena to the digital recording device, where each piece of the measurement system affects the system performance, rather than as a system consisting of small independent parts such as a sensor or an amplifier that could be designed separately. The objective of this doctoral dissertation is to describe in depth the development of the measurement system taking into account the challenges caused by the electrical and mechanical requirements and the measurement environment. The work is done as an empirical case study in two example applications that are both intended for scientific studies. The cases are a light sensitive biological sensor used in imaging and a gas electron multiplier detector for particle physics. The study showed that in these two cases there were a number of different parts of the measurement system that interacted with each other. Without considering these interactions, the reliability of the measurement may be compromised, which may lead to wrong conclusions about the measurement. For this reason it is beneficial to conceptualize the measurement system as a whole from the physical phenomena to the digital recording device where each piece of the measurement system affects the system performance. The results work as examples of how a measurement system can be successfully constructed to support a study of sensors and electronics.
Resumo:
Tässä työssä esitellään aurinkosähköjärjestelmien rakenne, toiminta ja niille sopivia käyttökohteita. Työn tavoitteena on arvioida teknillistaloudellisesti rakennukseen integroitujen aurinkosähköjärjestelmien soveltuvuutta Pohjoismaisiin olosuhteisiin. Tekninen arviointi toteutetaan pohjautuen kirjallisuuteen, käytännön analysointiin ja simuloituihin tuloksiin. Taloudellinen arviointi sisältää lisäksi myös laskennallista analysointia. Aurinkosähköjärjestelmän toiminnan arvioinnissa päädyttiin hyödyntämään aiemmin aurinkosähköjärjestelmien suorituskyvystä julkaistuja materiaaleja. Käytössä olevien resurssien rajallisuus ei mahdollistanut tarpeeksi laajamittaisten suorituskykytestien toteuttamista. Teknisen arvioinnin perusteella saatiin selville merkittävimpien tekijöiden vaikutus rakennukseen integroitujen aurinkosähköjärjestelmien toimintaan. Teknillistaloudellisen arvioinnin perusteella julkisivumateriaalien korvaaminen aurinkopaneeleilla tulee harkita tapauskohtaisesti. Työ sisältää myös katsauksen olemassa olevista teknisistä ratkaisuista.
Resumo:
Dans cet ouvrage, nous cherchons à comprendre l‘impact des perceptions sur la production et la gestion de la sécurité dans le réseau du transport en commun de Montréal. Quinze entrevues de recherche ont été effectuées avec des policiers de l‘Unité-Métro pour dégager les principaux éléments qui entrent dans la conception du risque. Les policiers sont appelés à travailler dans un environnement où, d‘une part, il n‘y a jamais eu d‘attaques terroristes, mais d‘autre part qui demeure une cible potentielle à la fois pour les experts, les gouvernements et dans la culture populaire. Nos résultats montrent que les policiers se développent une perception du risque qui leur est propre. En général, ils ont une attitude pragmatique qui leur permet de relativiser les situations et de décider lesquelles nécessitent une intervention de leur part. De plus, les policiers adoptent des stratégies de justification et de protection qui minimisent la perception du risque. Nos participants soulignent que ces stratégies sont nécessaires pour leur permettre d‘effectuer leurs tâches quotidiennes. Ainsi, afin d‘échapper à la paranoïa, les policiers évitent de penser à la menace terroriste et focus plutôt leur attention sur la criminalité sur laquelle ils ont l‘impression d‘avoir un pouvoir réel. Toutefois, la vigilance reste de mise. Malgré que les policiers ne conçoivent pas le risque de la même manière que les gestionnaires, la présence de l‘Unité-Métro demeure un élément important de production de la sécurité sur le terrain.
Resumo:
This thesis has been realised through a scholarship offered by the Government of Canada to the Government of the Republic of Mauritius under the Programme Canadien de Bourses de la Francophonie
Resumo:
Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.
Resumo:
The thesis entitled “Queueing Models with Vacations and Working Vacations" consists of seven chapters including the introductory chapter. In chapters 2 to 7 we analyze different queueing models highlighting the role played by vacations and working vacations. The duration of vacation is exponentially distributed in all these models and multiple vacation policy is followed.In chapter 2 we discuss an M/M/2 queueing system with heterogeneous servers, one of which is always available while the other goes on vacation in the absence of customers waiting for service. Conditional stochastic decomposition of queue length is derived. An illustrative example is provided to study the effect of the input parameters on the system performance measures. Chapter 3 considers a similar setup as chapter 2. The model is analyzed in essentially the same way as in chapter 2 and a numerical example is provided to bring out the qualitative nature of the model. The MAP is a tractable class of point process which is in general nonrenewal. In spite of its versatility it is highly tractable as well. Phase type distributions are ideally suited for applying matrix analytic methods. In all the remaining chapters we assume the arrival process to be MAP and service process to be phase type. In chapter 4 we consider a MAP/PH/1 queue with working vacations. At a departure epoch, the server finding the system empty, takes a vacation. A customer arriving during a vacation will be served but at a lower rate.Chapter 5 discusses a MAP/PH/1 retrial queueing system with working vacations.In chapter 6 the setup of the model is similar to that of chapter 5. The signicant dierence in this model is that there is a nite buer for arrivals.Chapter 7 considers an MMAP(2)/PH/1 queueing model with a nite retrial group
Resumo:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.
Resumo:
Animportant step in the residue number system(RNS) based signal processing is the conversion of signal into residue domain. Many implementations of this conversion have been proposed for various goals, and one of the implementations is by a direct conversion from an analogue input. A novel approach for analogue-to-residue conversion is proposed in this research using the most popular Sigma–Delta analogue-to-digital converter (SD-ADC). In this approach, the front end is the same as in traditional SD-ADC that uses Sigma–Delta (SD) modulator with appropriate dynamic range, but the filtering is doneby a filter implemented usingRNSarithmetic. Hence, the natural output of the filter is an RNS representation of the input signal. The resolution, conversion speed, hardware complexity and cost of implementation of the proposed SD based analogue-to-residue converter are compared with the existing analogue-to-residue converters based on Nyquist rate ADCs