921 resultados para suspended robot-arm system (SRAS)
Resumo:
Reliability analysis has several important engineering applications. Designers and operators of equipment are often interested in the probability of the equipment operating successfully to a given age - this probability is known as the equipment's reliability at that age. Reliability information is also important to those charged with maintaining an item of equipment, as it enables them to model and evaluate alternative maintenance policies for the equipment. In each case, information on failures and survivals of a typical sample of items is used to estimate the required probabilities as a function of the item's age, this process being one of many applications of the statistical techniques known as distribution fitting. In most engineering applications, the estimation procedure must deal with samples containing survivors (suspensions or censorings); this thesis focuses on several graphical estimation methods that are widely used for analysing such samples. Although these methods have been current for many years, they share a common shortcoming: none of them is continuously sensitive to changes in the ages of the suspensions, and we show that the resulting reliability estimates are therefore more pessimistic than necessary. We use a simple example to show that the existing graphical methods take no account of any service recorded by suspensions beyond their respective previous failures, and that this behaviour is inconsistent with one's intuitive expectations. In the course of this thesis, we demonstrate that the existing methods are only justified under restricted conditions. We present several improved methods and demonstrate that each of them overcomes the problem described above, while reducing to one of the existing methods where this is justified. Each of the improved methods thus provides a realistic set of reliability estimates for general (unrestricted) censored samples. Several related variations on these improved methods are also presented and justified. - i
Resumo:
The joints of a humanoid robot experience disturbances of markedly different magnitudes during the course of a walking gait. Consequently, simple feedback control techniques poorly track desired joint trajectories. This paper explores the addition of a control system inspired by the architecture of the cerebellum to improve system response. This system learns to compensate the changes in load that occur during a cycle of motion. The joint compensation scheme, called Trajectory Error Learning, augments the existing feedback control loop on a humanoid robot. The results from tests on the GuRoo platform show an improvement in system response for the system when augmented with the cerebellar compensator.
Resumo:
This paper describes a walking gait for a humanoid robot with a distributed control system. The motion for the robot is calculated in real time on a central controller, and sent over CAN bus to the distributed control system. The distributed control system loosely follows the motion patterns from the central controller, while also acting to maintain stability and balance. There is no global feedback control system; the system maintains its balance by the interaction between central gait and soft control of the actuators. The paper illustrates a straight line walking gait and shows the interaction between gait generation and the control system. The analysis of the data shows that successful walking can be achieved without maintaining strict local joint control, and without explicit global balance coordination.
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
Resumo:
This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
The photocatalytic disinfection of Enterobacter cloacae and Enterobacter coli using microwave (MW), convection hydrothermal (HT) and Degussa P25 titania was investigated in suspension and immobilized reactors. In suspension reactors, MW-treated TiO(2) was the most efficient catalyst (per unit weight of catalyst) for the disinfection of E. cloacae. However, HT-treated TiO(2) was approximately 10 times more efficient than MW or P25 titania for the disinfection of E. coli suspensions in surface water using the immobilized reactor. In immobilized experiments, using surface water a significant amount of photolysis was observed using the MW- and HT-treated films; however, disinfection on P25 films was primarily attributed to photocatalysis. Competitive action of inorganic ions and humic substances for hydroxyl radicals during photocatalytic experiments, as well as humic substances physically screening the cells from UV and hydroxyl radical attack resulted in low rates of disinfection. A decrease in colony size (from 1.5 to 0.3 mm) was noted during photocatalytic experiments. The smaller than average colonies were thought to occur during sublethal (•) OH and O(2) (•-) attack. Catalyst fouling was observed following experiments in surface water and the ability to regenerate the surface was demonstrated using photocatalytic degradation of oxalic acid as a model test system
Resumo:
At present, for mechanical power transmission, Cycloidal drives are most preferred - for compact, high transmission ratio speed reduction, especially for robot joints and manipulator applications. Research on drive-train dynamics of Cycloidal drives is not well-established. This paper presents a testing rig for Cycloidal drives, which would produce data for development of mathematical models and investigation of drive-train dynamics, further aiding in optimising its design
Resumo:
In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.
Resumo:
Persistent monitoring of the ocean is not optimally accomplished by repeatedly executing a fixed path in a fixed location. The ocean is dynamic, and so should the executed paths to monitor and observe it. An open question merging autonomy and optimal sampling is how and when to alter a path/decision, yet achieve desired science objectives. Additionally, many marine robotic deployments can last multiple weeks to months; making it very difficult for individuals to continuously monitor and retask them as needed. This problem becomes increasingly more complex when multiple platforms are operating simultaneously. There is a need for monitoring and adaptation of the robotic fleet via teams of scientists working in shifts; crowds are ideal for this task. In this paper, we present a novel application of crowd-sourcing to extend the autonomy of persistent-monitoring vehicles to enable nonrepetitious sampling over long periods of time. We present a framework that enables the control of a marine robot by anybody with an internet-enabled device. Voters are provided current vehicle location, gathered science data and predicted ocean features through the associated decision support system. Results are included from a simulated implementation of our system on a Wave Glider operating in Monterey Bay with the science objective to maximize the sum of observed nitrate values collected.
Resumo:
We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.
Resumo:
Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
This paper proposes a method for design of a set-point regulation controller with integral action for an underactuated robotic system. The robot is described as a port-Hamiltonian system, and the control design is based on a coordinate transformation and a dynamic extension. Both the change of coordinates and the dynamic extension add extra degrees of freedom that facilitate the solution of the matching equation associated with interconnection and damping assignment passivity-based control designs (IDA-PBC). The stability of the controlled system is proved using the closed loop Hamiltonian as a Lyapunov candidate function. The performance of the proposed controller is shown in simulation.