978 resultados para surface science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A UHV atomic force microscope with a conducting tip is used to measure the tip-sample conductance as a function of the applied force on well-ordered, monolayer islands of C60 on Cu(111). By imaging the sample before and after each force-distance experiment, it was possible to investigate the forces required for the removal of individual C60 molecules from the islands. The removal of C60 occurs near defects or edges of the C60 islands and requires an applied force of 5-20 nN, which corresponds to applied pressures of order 1 GPa. In addition, it was possible to investigate the strength of the C60 film on the molecular scale. It was found that the mechanical stiffness of a C60 molecule is of order 6 N/m and the islands appear to undergo a reversible yield process at an applied pressure of around 1.2 GPa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste. © 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (Ra) of FIB milled areas after cleaning is less than 2 nm. © 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the growth temperature dependences of InN films grown by metal organic chemical vapor deposition (MOCVD). Experimental results indicate that growth temperature has a strong effect on the surface morphology, crystalline quality and electrical properties of the InN layer. The increasing growth temperature broadened the v scan's full-width at half-maximum (FWHM) and roughened the surface morphology; whereas the electrical properties improved: As the temperature increased from 460 degrees C to 560 degrees C, room-temperature Hall mobility increased from 98 cm(2)/V s to nearly 800 cm(2)/V s and carrier concentration dropped from 5.29 x 10(19) cm (3) to 0.93 x 10(19) cm (3). The higher growth temperature resulted in more efficient cracking of NH3, which improved Hall mobility and decreased carrier concentration. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the structural and optical properties of high Al-content AlInGaN epilayers with different thicknesses grown on GaN/sapphire templates by metalorganic chemical vapor deposition (MOCVD). Direct evidences of the gradual evolution of the content of Al, Ga and In along the growth direction were obtained. When the film thickness was over a certain value, however, the AlInGaN epilayer with constant element contents began to form. These results were also supported by the blue shift and splitting of the photoluminescence (PL) peak. For the thinnest epilayer, the surface was featured with outcrops of threading dislocations (TDs) which suggested a spiral growth mode. With increase in thickness, step-flow growth mode and V-shaped pits were observed, and the steps terminated at the pits. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.