934 resultados para standard gas analysis
Resumo:
The aim of this study was to validate oxygen-sensitive 3He-MRI in noninvasive determination of the regional, two- and three-dimensional distribution of oxygen partial pressure. In a gas-filled elastic silicon ventilation bag used as a lung phantom, oxygen sensitive two- and three-dimensional 3He-MRI measurements were performed at different oxygen concentrations which had been equilibrated in a range of normal and pathologic values. The oxygen partial pressure distribution was determined from 3He-MRI using newly developed software allowing for mapping of oxygen partial pressure. The reference bulk oxygen partial pressure inside the phantom was measured by conventional respiratory gas analysis. In two-dimensional measurements, image-based and gas-analysis results correlated with r=0.98; in three-dimensional measurements the between-methods correlation coefficient was r=0.89. The signal-to-noise ratio of three-dimensional measurements was about half of that of two-dimensional measurements and became critical (below 3) in some data sets. Oxygen-sensitive 3He-MRI allows for noninvasive determination of the two- and three-dimensional distribution of oxygen partial pressure in gas-filled airspaces.
Resumo:
BACKGROUND The aim of this study was to evaluate the accuracy of linear measurements on three imaging modalities: lateral cephalograms from a cephalometric machine with a 3 m source-to-mid-sagittal-plane distance (SMD), from a machine with 1.5 m SMD and 3D models from cone-beam computed tomography (CBCT) data. METHODS Twenty-one dry human skulls were used. Lateral cephalograms were taken, using two cephalometric devices: one with a 3 m SMD and one with a 1.5 m SMD. CBCT scans were taken by 3D Accuitomo® 170, and 3D surface models were created in Maxilim® software. Thirteen linear measurements were completed twice by two observers with a 4 week interval. Direct physical measurements by a digital calliper were defined as the gold standard. Statistical analysis was performed. RESULTS Nasion-Point A was significantly different from the gold standard in all methods. More statistically significant differences were found on the measurements of the 3 m SMD cephalograms in comparison to the other methods. Intra- and inter-observer agreement based on 3D measurements was slightly better than others. LIMITATIONS Dry human skulls without soft tissues were used. Therefore, the results have to be interpreted with caution, as they do not fully represent clinical conditions. CONCLUSIONS 3D measurements resulted in a better observer agreement. The accuracy of the measurements based on CBCT and 1.5 m SMD cephalogram was better than a 3 m SMD cephalogram. These findings demonstrated the linear measurements accuracy and reliability of 3D measurements based on CBCT data when compared to 2D techniques. Future studies should focus on the implementation of 3D cephalometry in clinical practice.
Resumo:
Accurate screening for anemia at Red Cross blood donor clinics is essential to maintain a safe national blood supply. Despite the importance of identifying anemia correctly by measurement of hemoglobin or hematocrit (hemoglobin/hematocrit) there is no consensus regarding the efficacy of the current two stage screening method which uses the Readacrit$\sp{\rm tm}$ microhematocrit in conjunction with copper sulfate.^ A cross-sectional study was implemented in which hemoglobin/hematocrit was measured, with the present method and four new devices, on 504 prospective blood donors at a Canadian Red Cross permanent blood donor clinic in London, Canada. Concurrently gathered, venous and capillary blood samples were tested by each device and compared to Coulter S IV$\sp{\rm tm}$ determined venous standard readings. Instrument hemoglobin/hematocrit means were statistically calibrated to the standard ones in order to appraise systematic deviations from the standard. Classification analysis was employed to assess concordance between each instrument and the standard when classifying prospective donors as anemic or non-anemic. This was done both when each instrument was used alone (single stage) and when copper sulfate was used as a preliminary screen (two stage) and simulated over a range of anemia prevalences. The Hemoximeter$\sp{\rm tm}$ and Compur M1000$\sp{\rm tm}$ devices had the highest correlations of hemoglobin measurements with the standard ones for both capillary (n.s.) and venous blood (p $<$.05). Analysis of variance (anova) also showed them to be the most accurate (p $<$.05), as did both single and two stage classification analysis, therefore, they are both recommended. There was a smaller difference between instruments for two stage than for single stage screening; therefore instrument choice is less crucial for the former. The present method was adequate for two stage screening as tested but simulations showed that it would discriminate poorly in populations with a higher prevalence of anemia. The Stat-crit and Readacrit, which measure hematocrit, became less accurate at crucial low hematocrit levels. In light of this finding and the introduction of new, effective and easy to use hemoglobin measuring instruments, the continued use of hematocrit as a surrogate for hemoglobin, is not recommended. ^
Resumo:
Low molecular weight hydrocarbon (LMWH) distributions were examined in sediments from Sites 1109 and 1115 in the western Woodlark Basin using purge-trap thermal adsorption/desorption gas analysis. A number of different hydrocarbon components >C1, which were not detected during shipboard gas analysis, were detected at both sites using the purge-trap procedure. Concentrations of ethane, propane, and butane remained relatively low (<100 pmol/g) throughout Site 1109 and had no consistent trend with depth. In contrast, the longer-chain components increased in concentration with depth. Hexane concentrations rose to 716 pmol/g at the base of the site with a concomitant increase in both 2-methyl- and 3-methylpentane. At Site 1115, concentrations of ethane, propane, butane, and isobutylene + 1-butene remained low (<60 pmol/g) throughout the site and again had no consistent trend with depth. 2-Methylpentane, 3-methylpentane, and hexane concentrations had a subsurface maximum that coincided with sediments containing abundant plant-rich material. The LMWH downhole profiles plus low in situ temperatures suggest that the LMWH components were formed in situ by low-temperature biological processes. Purge-trap analysis has indicated the presence of some unexpected deep low-temperature bacterial reactions, which demonstrates that further analysis of LMWH may provide valuable information at future Ocean Drilling Program sites.
Resumo:
Rock samples from Hole 735B, Southwest Indian Ridge, were examined to determine the principal vein-related types of alteration that occurred, the nature of fluids that were present, and the temperatures and pressures of these fluids. Samples studied included veined metagabbro, veined mylonitic metagabbro, felsic trondhjemite, and late-stage leucocratic diopside-bearing veins. The methods used were standard petrographic analysis, mineral chemical analysis by electron microprobe, fluid inclusion petrography and analysis by heating/freezing techniques and laser Raman microspectroscopy, and oxygen isotopic analyses of mineral separates. Alteration in lithologic Units I and II (above the level of Core 118-735B-3OR; approximately 140 meters below the seafloor) is dominated by hydration by seawater-derived fluids at high temperature, up to about 700°C, and low water/rock ratio, during and immediately after pervasive ductile deformation. Below Core 118-735B-30R, pervasive deformation is less common, and brittle veining and brecciation are the major alteration styles. Leucocratic centimeter-scale veins, often containing diopside and plagioclase, were produced by interaction of hot (about 500°C) seawater-derived fluid and gabbro. The water/rock ratio was locally high at the veins and breccia zones, but the integrated water/rock ratio for the lower part of the hole is probably low. Accessory hydrous magmatic or deuteric phases formed from magmatic volatiles in some gabbro and in trondhjemite. Most subsequent alteration was affected by fluids that were seawater-derived, based on isotopic and chemical analyses of minerals and analyses of fluid inclusions. Many early-generation fluid inclusions, associated with high-temperature veining, contain appreciable methane as well as saline water. The source of methane is unclear, but it may have formed as seawater was reduced during low water/rock interaction with ultramafic upper mantle or ultramafic and mafic layer 3. Temperatures of alteration were calculated on the basis of coexisting mineral chemistry and isotopic values. Hydrothermal metamorphism commenced at about 720°C and continued to about 550°C. Leucocratic veining took place at about 500°C. Alteration within brecciated horizons was also at about 500° to less than 400°C, and the trondhjemite was altered at about 550° to below 490°C. Pressures calculated from a diopside-bearing vein, based on a combination of fluid inclusion and isotopic analysis, were 90 to 100 MPa. This pressure places the sample, from Core 118-735B-70R in Unit V, at about 2 km below the seafloor.
Resumo:
We investigated gas bubble emissions at the Don-Kuban paleo-fan in the northeastern Black Sea regarding their geological setting, quantities as well as spatial and temporal variabilities during three ship expeditions between 2007 and 2011. About 600 bubble-induced hydroacoustic anomalies in the water column (flares) originating from the seafloor above the gas hydrate stability zone (GHSZ) at ~700 m water depth were found. At about 890 m water depth a hydrocarbon seep area named "Kerch seep area" was newly discovered within the GHSZ. We propose locally domed sediments ('mounds') discovered during ultra-high resolution bathymetric mapping with an autonomous underwater vehicle (AUV) to result from gas hydrate accumulation at shallow depths. In situ measurements indicated spatially limited temperature elevations in the shallow sediment likely induced by upward fluid flow which may confine the local GHSZ to a few meters below the seafloor. As a result, gas bubbles are suspected to migrate into near-surface sediments and to escape the seafloor through small-scale faults. Hydroacoustic surveys revealed that several flares originated from a seafloor area of about 1 km**2 in size. The highest flare disappeared in about 350 m water depth, suggesting that the released methane remains in the water column. A methane flux estimate, combining data from visual quantifications during dives with a remotely operated vehicle (ROV) with results from ship-based hydroacoustic surveys and gas analysis revealed that between 2 and 87 x 10**6 mol CH4 yr-1 escaped into the water column above the Kerch seep area. Our results show that the finding of the Kerch seep area represents a so far underestimated type of hydrocarbon seep, which has to be considered in methane budget calculations.