903 resultados para solid-state fermentation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different inorganic-organic hetero-junctions (A : ITO/SiO2/Alq(3)/Al, B: ITO/Alq3/SiO2/Al and C: ITO/SiO2/Alq(3)/ SiO2/Al) were fabricated. The emission can be observed only under positive bias in devices A and B, but under both biases in device C according to their brightness waveforms. With increasing voltage, the increase in blue emission in devices B and C is faster than that in green emission. This is because that the recombination of hot electrons and holes, i.e., electron-hole pairs, produced blue emission in devices B and C, and the recombination of electrons injected from Al with the accumulated holes, which are excited by hot electrons, produced green emission in device A. Hence, the emissions of the devices are attributed to not only the recombination of electrons and accumulated holes, but also the cathodoluminescence-like (CL-like) emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantum coherence control of a solid-state charge qubit is studied by using a suboptimal continuous feedback algorithm within the Bayesian feedback scheme. For the coherent Rabi oscillation, the present algorithm suggests a simple bang-bang control protocol, in which the control parameter is modulated between two values. For the coherence protection of the idle state, the present approach is applicable to arbitrary states, including those lying on the equator of the Bloch sphere which are out of control in the previous Markovian feedback scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we propose a scheme to buildup a highly coherent solid-state quantum bit (qubit) from two coupled quantum dots. Quantum information is stored in the state of the electron-hole pair with the electron and hole located in different dots, and universal quantum gates involving any pair of qubits are realized by effective coupling interaction via virtually exchanging cavity photons. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the continuous weak measurement of a solid-state qubit by single electron transistors (SET). For single-dot SET, we find that in nonlinear response regime the signal-to-noise ratio can violate the universal upper bound imposed quantum mechanically on any linear response detectors. We understand the violation by means of the cross-correlation of the detector currents. For double-dot SET, we discuss its robustness against wider range of temperatures, quantum efficiency, and the relevant open issues unresolved.