985 resultados para silicate-based ceramics
Resumo:
A methodology to recover the non-ohmic properties of ZnO based varistors after degradation with long and short duration pulses was proposed in this work. The basic idea consists in submitt the degraded ceramics at different temperatures and oxygen flows. Thermal treatment at 900 degrees C for 2 h with oxygen flow of 15 l/h allowed to obtain better non-linear coefficient (alpha= 52.5) compared to the standard sample. Rietveld refinement showed that with the thermal treatment, the oxygen species and the beta-Bi2O3 phase, lost in the degradation process, are recovered in the grain boundary.
Resumo:
We report on light-emitting devices based on a green-phosphor compound (Mn-doped zinc silicate, Zn2SiO4: Mn) dispersed in a conductive polymeric blend (poly-o-methoxyaniline/polyvinylene fluoride, POMA/PVDF-TrFE). The devices exhibited high luminance in the green, good stability and homogeneous brilliance over effective areas up to 5 cm(2). The electroluminescence (EL) spectrum presented essentially the same characteristics as the photoluminescence (PL) and cathodoluminescence spectra, indicating that the light emission originates from decay of the same excited species, regardless of the excitation source. Operating characteristics were analyzed with current density - voltage (J - V) and luminance voltage ( L - V) curves to investigate the nature of the electroluminescence of the active material, which is still not completely understood.
Resumo:
Glass ionomer cements (GICs) are glass and polymer composite materials. These materials currently find use in the dental field. The purpose of this work is to obtain systems based on composition 4.5SiO(2)-3Al(2)O(3)-XNb2O5-2CaO to be used in Dentistry. The systems were prepared by chemical route at 700 degrees C. The results obtained by XRD and DTA showed that all systems prepared are glasses. The structures of the obtained glasses were compared to commercial material using Al-27 and Si-29 MAS NMR. The analysis of MAS NMR spectra indicated that the systems developed and commercial material are formed by SiO4 and AlO4 linked tetrahedra. The properties of glass ionomer cements based on the glasses prepared with several niobium contents were studied. Setting and working times of the cement pastes, microhardness and diametral tensile strength were evaluated for the experimental GICs and commercial luting cements. It was concluded that setting time of the cement pastes increased with increasing niobium content of the glasses (X). The properties to the GICs such as setting time and microhardness were influenced by niobium content. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
The temperature dependence of the electrical conductivity and the F-19 nuclear magnetic resonance (NMR) of PbGeO3-PbF2CdF, glasses and glass ceramics are investigated. The measured conductivity values of the glasses are above 10(-5) Skin at 500 K, and increase with increasing lead fluoride content. Activation energies extracted from the conductivity data are in the range 0.59-0.73 eV. Results are consistent with the hypothesis that in these oxyfluoride glasses lead fluoride rich clusters are dispersed in a metagermanate based matrix providing increasing mobility pathways for conducting ions. The conductivity of a sample of the glass ceramic of composition (mol%) 60PbGeO(3-)20PbF(2)-20CdF(2) was found to be smaller than that in the corresponding glass, suggesting that there are poor ionic conducting regions in the interface between the nanometer sized crystals. The temperature dependence of the F-19 relaxation times, measured in the range 100-800 K, exhibit the qualitative features associated with high fluorine mobility in both, glass and glass ceramics materials. We suggest that de-convolution of the spin-lattice relaxation rates observed in the glass ceramics shows that the observed high temperature rate maximum is associated with the diffusional motions of the fluorine ions in beta-PbF2 crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses some advances in research conducted on SnO2-based electroceramics. The addition of different dopants, as well as several thermal treatments in oxidizing and inert atmospheres, were found to influence the microstructure and electrical properties of SnO2-based varistor ceramics. Measurements taken by impedance spectroscopy revealed variations in the height and width of the potential barrier resulting from the atmosphere in which thermal treatments were performed. High nonlinear coefficient values, which are characteristic of high-voltage and commercial ZnO varistors, were obtained for these SnO2-based systems. All the systems developed here have potentially promising varistor applications. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transparent oxyfluoride glasses and beta-PbF(2) nanocrystals containing glass-ceramics were prepared with varying Eu(3+) content (0.3, 0.4, 0.5 and 0.6%). The effect of Eu(3+) content on the preparation of glass-ceramics was investigated. From differential scanning calorimetry, the T(x)-T(g)(T(x)-temperature of the onset of crystallization; T(g)-glass transition temperature) parameter for glasses has shown slight variation, and an exothermic peak near T(g) called the ceramization temperature (T(c)) has been observed. Heat treatments were performed at this temperature to obtain transparent glass-ceramics containing beta-PbF(2) nanocrystals, identified by x-ray diffraction. Heat treatments for different periods of time were performed and were observed to be very important in the control of the crystal size and of the crystallization rate. Based upon the absorption spectra, the scattering level due to the presence of beta-PbF(2) nanocrystals in the glass-ceramics was observed to be similar to that for the mother glasses. Detailed analysis of emission spectra and decay time measurements led to the identification of Eu(3+) ions as the beta-PbF(2) crystalline phase. Excitation spectra at 70 K show the interaction of Eu(3+) ions with the fluorogermanate network.
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A comparative study of two customary routes of ceramics processing applied to the synthesis of SnO2-based varistors is reported in this paper. Devices of equivalent composition were prepared through the Pechini method and through directly mixing the oxides without the addition of anti-agglomerants or binders. The microstructures of the sintered samples were characterised with X-ray diffraction and scanning and transmission electron microscopies. The electrical behaviour of the devices was studied on the basis of the current density versus electric field (J-E) characteristics and impedance spectroscopy measurements. The Pechini method ensures the homogeneity in the distribution of the additives in the tin oxide matrix but the formation of secondary phases seems to be independent of the synthesis route. Devices with similar non-linear coefficients of 18 and 21 were obtained through the mixed oxides route and the Pechini method, respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The possibility of mechanochemical synthesis of the lead magnesium niobate (PMN) powders of the composition Pb(Mg(1/3)Nb(2/3))O(3) in iron vials was investigated. According to X-ray and energy-dispersive spectroscopy (EDS) analysis of the obtained powder mixtures, milling in iron vials resulted in incorporation of Fe and formation of PFN of composition Pb(Fe(1/2)Nb(1/2))O(3) simultaneously with formation of PMN. Relative amounts of PMN and PFN were determined based on values of Curie temperature and lattice constant of perovskite phase. Although only 1 wt pct of Fe was incorporated, a stoichiometry of the system was significantly changed, resulting in formation of pyrochlore phase and excess MgO. Single-phase perovskite was obtained when the excess of PbO and Nb(2)O(5) was added during mechanochemical synthesis. Because the dielectric properties were worse than expected, the alternative ways for improvement of dielectric properties were tried and discussed.
Resumo:
The non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.
Resumo:
Ferroelectric ceramic particles based on lead titanate zirconate (PZT) were dispersed in a polymer matrix based on castor oil. After the poling process, the pyroelectric activity of this composite was measured using a direct method in which a linear heating rate was applied to the pre-poled samples. The pyroelectric coefficient at 343 K is comparable with that of a PZT-poly(vinylidene fluoride) (PVDF) composite and significantly higher than that of PVDF. © 1998 Kluwer Academic Publishers.
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterized as materials for sensor applications. The piezoelectric coefficients d 31 and d 33 were measured with the usual technique. The piezoelectric charge constant d 33 yields values up to ≤24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.