953 resultados para shear stiffness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability of airborne nanoparticle agglomerates is important for occupational exposure and risk assessment in determining particle size distribution of nanomaterials. In this study, we developed an integrated method to test the stability of aerosols created using different types of nanomaterials. An aerosolization method, that resembles an industrial fluidized bed process, was used to aerosolize dry nanopowders. We produced aerosols with stable particle number concentrations and size distributions, which was important for the characterization of the aerosols' properties. Next, in order to test their potential for deagglomeration, a critical orifice was used to apply a range of shear forces to them. The mean particle size of tested aerosols became smaller, whereas the total number of particles generated grew. The fraction of particles in the lower size range increased, and the fraction in the upper size range decreased. The reproducibility and repeatability of the results were good. Transmission electron microscopy imaging showed that most of the nanoparticles were still agglomerated after passing through the orifice. However, primary particle geometry was very different. These results are encouraging for the use of our system for routine tests of the deagglomeration potential of nanomaterials. Furthermore, the particle concentrations and small quantities of raw materials used suggested that our system might also be able to serve as an alternative method to test dustiness in existing processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamics of shear-band formation and evolution using a simple rheological model. The description couples the local structure and viscosity to the applied shear stress. We consider in detail the Couette geometry, where the model is solved iteratively with the Navier-Stokes equation to obtain the time evolution of the local velocity and viscosity fields. It is found that the underlying reason for dynamic effects is the nonhomogeneous shear distribution, which is amplified due to a positive feedback between the flow field and the viscosity response of the shear thinning fluid. This offers a simple explanation for the recent observations of transient shear banding in time-dependent fluids. Extensions to more complicated rheological systems are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental study of the effects of tow-drop gaps in Variable Stiffness Panels under drop-weight impact events. Two different configurations, with and without ply-staggering, have been manufactured by Automated Fibre Placement and compared with their baseline counterpart without defects. For the study of damage resistance, three levels of low velocity impact energy are generated with a drop-weight tower. The damage area is analysed by means of ultrasonic inspection. Results of the analysed defect configurations indicate that the influence of gap defects is only relevant under small impact energy values. However, in the case of damage tolerance, the residual compressive strength after impact does not present significant differences to that of conventional straight fibre laminates. This indicates that the strength reduction is driven mainly by the damage caused by the impact event rather than by the influence of manufacturing-induced defects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated Fiber Placement is being extensively used in the production of major composite components for the aircraft industry. This technology enables the production of tow-steered panels, which have been proven to greatly improve the structural efficiency of composites by means of in-plane stiffness variation and load redistribution. However, traditional straight-fiber architectures are still preferred. One of the reasons behind this is related to the uncertainties, as a result of process-induced defects, in the mechanical performance of the laminates. This experimental work investigates the effect of the fiber angle discontinuities between different tow courses in a ply on the un-notched and open-hole tensile strength of the laminate. The influence of several manufacturing parameters are studied in detail. The results reveal that 'ply staggering' and '0% gap coverage' is an effective combination in reducing the influence of defects in these laminates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Liver stiffness is increasingly used in the non-invasive evaluation of chronic liver diseases. Liver stiffness correlates with hepatic venous pressure gradient (HVPG) in patients with cirrhosis and holds prognostic value in this population. Hence, accuracy in its measurement is needed. Several factors independent of fibrosis influence liver stiffness, but there is insufficient information on whether meal ingestion modifies liver stiffness in cirrhosis. We investigated the changes in liver stiffness occurring after the ingestion of a liquid standard test meal in this population. METHODS: In 19 patients with cirrhosis and esophageal varices (9 alcoholic, 9 HCV-related, 1 NASH; Child score 6.9±1.8), liver stiffness (transient elastography), portal blood flow (PBF) and hepatic artery blood flow (HABF) (Doppler-Ultrasound) were measured before and 30 minutes after receiving a standard mixed liquid meal. In 10 the HVPG changes were also measured. RESULTS: Post-prandial hyperemia was accompanied by a marked increase in liver stiffness (+27±33%; p<0.0001). Changes in liver stiffness did not correlate with PBF changes, but directly correlated with HABF changes (r = 0.658; p = 0.002). After the meal, those patients showing a decrease in HABF (n = 13) had a less marked increase of liver stiffness as compared to patients in whom HABF increased (n = 6; +12±21% vs. +62±29%,p<0.0001). As expected, post-prandial hyperemia was associated with an increase in HVPG (n = 10; +26±13%, p = 0.003), but changes in liver stiffness did not correlate with HVPG changes. CONCLUSIONS: Liver stiffness increases markedly after a liquid test meal in patients with cirrhosis, suggesting that its measurement should be performed in standardized fasting conditions. The hepatic artery buffer response appears an important factor modulating postprandial changes of liver stiffness. The post-prandial increase in HVPG cannot be predicted by changes in liver stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the modulus tangent (Eci ) and of the modulus secant (Ecs) of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck). Relations are also used to determine the transversal modulus (Gc) and, in the case of the Poisson's ratio (ν), a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trusses are structural systems commonly used in projects, being employed mainly in roof structures, present in most rural buildings. The design of trusses, as well as other structural systems, requires the determination of displacements, strains and stresses. However, the project is developed from an ideal model of calculation, considering free rotation between the elements of a connection. This paper presents a computer program for the analysis of bidimensional wooden trusses with connections formed with two screws per node. The formulation is based on the flexibility method, taking into account the influence of the effect of semi-rigid connections formed by two screws. An example of a structure is presented and analyzed by the program developed here, highlighting the importance of behavior analysis on semi-rigid connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three degree of freedom model of the dynamic mass at the middle of a test sample, resembling a Stockbridge neutraliser, is introduced. This model is used to identify the hereby called equivalent complex cross section flexural stiffness (ECFS) of the beam element which is part of the whole test sample. This ECFS, once identified, gives the effective cross section flexural stiffness of the beam as well as its effective damping, measured as the loss factor of an equivalent viscoelastic beam. The beam element of the test sample may be of any complexity, such as a segment of stranded cable of the ACSR type. These data are important parameters for the design of overhead power transmission lines and other cable structures. A cost function is defined and used in the identification of the ECFS. An experiment, designed to measure the dynamic masses of two test samples, is described. Experimental and identified results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical forces including pressure and shear stress play an important role in vascular homeostasis via the control of the production and release of a variety of vasoactive factors. An increase in vascular shear stress is accompanied by nitric oxide (NO) release and NO synthase activation. Previously, we have demonstrated that shear stress induces angiotensin-I converting enzyme (ACE) down-regulation in vivo and in vitro. In the present study, we determined whether NO participates in the shear stress-induced ACE suppression response. Rabbit aortic endothelial cells were evaluated using the NO synthase inhibitor L-NAME, and two NO donors, diethylamine NONOate (DEA/NO) and sodium nitroprusside (SNP). Under static conditions, incubation of endothelial cells with 1 mM L-NAME for 18 h increased ACE activity by 27% (from 1.000 ± 0.090 to 1.272 ± 0.182) while DEA/NO and SNP (0.1, 0.5 and 1 mM) caused no change in ACE activity. Interestingly, ACE activity was down-regulated similarly in the presence or absence of L-NAME (delta(0 mM) = 0.26 ± 0.055, delta(0.1 mM) = 0.21 ± 0.22, delta(1 mM) = 0.36 ± 0.13) upon 18 h shear stress activation (from static to 15 dyn/cm²). Taken together, these results indicate that NO can participate in the maintenance of basal ACE levels in the static condition but NO is not associated with the shear stress-induced inactivation of ACE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the possible age-related blood pressure (BP) deregulation in response to central hypervolemia, we measured spontaneous baroreflex sensitivity (SBRS), carotid arterial compliance (CC), and R-R interval coefficient of variation (RRICV) during basal and thermoneutral resting head-out-of-water immersion (HOWI) in 7 young (YG = 24.0 ± 0.8 years) and 6 middle-aged/older (OL = 59.3 ± 1.3 years) healthy men. Compared with basal conditions (YG = 19.6 ± 4.0 vs OL = 6.1 ± 1.5 ms/mmHg, P < 0.05), SBRS remained higher in YG than OL during rest HOWI (YG = 23.6 ± 6.6 vs OL = 9.3 ± 2.1 ms/mmHg, P < 0.05). The RRICV was significantly different between groups (YG = 6.5 ± 1.4 vs OL = 2.8 ± 0.4%, P < 0.05) under HOWI. The OL group had no increase in CC, but a significant increase in systolic BP (basal = 115.3 ± 4.4 vs water = 129.3 ± 5.3 mmHg, P < 0.05) under HOWI. In contrast, the YG group had a significant increase in CC (basal = 0.16 ± 0.01 vs water = 0.17 ± 0.02 mm²/mmHg, P < 0.05) with no changes in systolic BP. SBRS was positively related to CC (r = 0.58, P < 0.05 for basal vs r = 0.62, P < 0.05 for water). Our data suggest that age-related vagal dysfunction and reduced CC may be associated with SBRS differences between YG and OL groups, and with BP elevation during HOWI in healthy older men.