999 resultados para seasonal forest
Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA
Resumo:
This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^
Resumo:
The southern Everglades and Florida Bay have experienced a nearly 50 % reduction in freshwater flow resulting in increased salinity and landward expansion of mangrove forest. Given the marine end-member is a natural source of P to this region, it is necessary to understand the interactions between inflows and P availability in controlling the exchange of materials across the mangrove ecotone. From 2007 to 2008, we used sediment core incubations to quantify fluxes of dissolved inorganic N and P and dissolved organic carbon (DOC) in three ecotone areas (dwarf mangrove, pond, and bay). Experiments were repeated seasonally over 2 years involving P-enriched surface water as a factor. We saw consistent uptake of soluble reactive P (SRP), DOC, and nitrate + nitrite (N+N) by the soils/sediments and release of ammonium (NH4 +) from soils/sediments to the water column across all sites and seasons. P enrichment had no discernible effect on DIN or DOC flux, suggesting that rapid P uptake may have been more geochemically mediated. However, uptake of added P occurred across all sites and seasons, reflecting high uptake capacity in this carbonate system and the potential of the mangrove ecotone to sequester P as it becomes more available.
Resumo:
Forests change with changes in their environment based on the physiological responses of individual trees. These short-term reactions have cumulative impacts on long-term demographic performance. For a tree in a forest community, success depends on biomass growth to capture above- and belowground resources and reproductive output to establish future generations. Here we examine aspects of how forests respond to changes in moisture and light availability and how these responses are related to tree demography and physiology.
First we address the long-term pattern of tree decline before death and its connection with drought. Increasing drought stress and chronic morbidity could have pervasive impacts on forest composition in many regions. We use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 years. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with species drought tolerance.
Next, we investigate differences among tree species in reproductive output relative to biomass growth with changes in light availability. Previous studies reach conflicting conclusions about the constraints on reproductive allocation relative to growth and how they vary through time, across species, and between environments. We test the hypothesis that canopy exposure to light, a critical resource, limits reproductive allocation by comparing long-term relationships between reproduction and growth for trees from 21 species in forests throughout the southeastern U.S. We found that species had divergent responses to light availability, with shade-intolerant species experiencing an alleviation of trade-offs between growth and reproduction at high light. Shade-tolerant species showed no changes in reproductive output across light environments.
Given that the above patterns depend on the maintenance of transpiration, we next developed an approach for predicting whole-tree water use from sap flux observations. Accurately scaling these observations to tree- or stand-levels requires accounting for variation in sap flux between wood types and with depth into the tree. We compared different models with sap flux data to test the hypotheses that radial sap flux profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in new settings. We outline a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.
Finally, we estimated tree water balances during drought with a statistical time-series analysis. Moisture limitation in forest stands comes predominantly from water use by the trees themselves, a drought-stand feedback. We show that drought impacts on tree fitness and forest composition can be predicted by tracking the moisture reservoir available to each tree in a mass balance. We apply this model to multiple seasonal droughts in a temperate forest with measurements of tree water use to demonstrate how species and size differences modulate moisture availability across landscapes. As trees deplete their soil moisture reservoir during droughts, a transpiration deficit develops, leading to reduced biomass growth and reproductive output.
This dissertation draws connections between the physiological condition of individual trees and their behavior in crowded, diverse, and continually-changing forest stands. The analyses take advantage of growing data sets on both the physiology and demography of trees as well as novel statistical techniques that allow us to link these observations to realistic quantitative models. The results can be used to scale up tree measurements to entire stands and address questions about the future composition of forests and the land’s balance of water and carbon.
Resumo:
Forest fragmentation is one of the main causes of biodiversity loss, directly affecting the ecological processes. This study aimed to evaluate tree diversity, structure, and composition parameters in three sectors of a forest fragment with distinct disturbance records. The arboreal vegetation was evaluated in twenty-four 10 × 10 m plots, sampling a total of 1,228 living individuals. We calculated Shanon’s diversity index, Pielou’s equability, and jackknife estimators of first and second orders. The sampled individuals were distributed in diameter classes and the importance value (VI) was calculated for each species. It was made a Detrended Correspondence Analysis (DCA) to verify whether there were significant distinctions between the sectors. It was noticed that the sector where there was clear cutting and vegetation burning in a recent past had higher abundance and richness but also the worst equability. That corresponds to the effects of perturbation as confirmed by the tree diameters and the presence of species of greater importance value. The sector that had no record of disturbance, situated in a location with greater variety of microenvironments, presented diversity, structure, and composition consistent with a no disturbance scenario. The other sector, which did not have clear cutting, was subjected to cattle trampling presented ecological parameters consistent with the absence of major disturbances. On the other hand, this third sector had the smallest environmental diversity, which puts this last sector in an intermediate situation.
Resumo:
AMMONIUM UPTAKE, TRANSPORT AND NITROGEN ECONOMY IN FOREST TREES Francisco M. Cánovas, Concepción Avila, Fernando N. de la Torre, Rafael A. Cañas, Belén Pascual, Vanessa Castro- Rodríguez, Jorge El-Azaz Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain. Email: canovas@uma.es Forests ecosystems play a fundamental role in the regulation of global carbon fixation and preservation of biodiversity. Forest trees are also of great economic value because they provide a wide range of products of commercial interest, including wood, pulp, biomass and important secondary metabolites. The productivity of most forest ecosystems is limited by low nitrogen availability and woody perennials have developed adaptation mechanisms, such as ectomycorrhizal associations, to increase the efficiency of N acquisition and metabolic assimilation. The efficient acquisition, assimilation and economy of nitrogen are of special importance in trees that must cope with seasonal periods of growth and dormancy over many years. In fact, the ability to accumulate nitrogen reserves and to recycle N is crucial to determine the growth and production of forest biomass. Ammonium is the predominant form of inorganic nitrogen in the soil of temperate forests and many research efforts are addressed to study the regulation of ammonium acquisition, assimilation and internal recycling for the biosynthesis of amino acids, particularly those relevant for nitrogen storage. In our laboratory, we are interested in studying nitrogen metabolism and its regulation in maritime pine (Pinus pinaster L. Aiton), a conifer species of great ecological and economic importance in Europe and for which whole-transcriptome resources are available. The metabolism of phenylalanine plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids and the regulation of this pathway is of broad significance for nitrogen economy of maritime pine. We are currently exploring the molecular properties and regulation of genes involved in the biosynthesis and metabolic fates of phenylalanine in maritime pine. An overview of this research programme will be presented and discussed. Research supported by Spanish Ministry of Economy and Competitiveness and Junta de Andalucía (Grants BIO2015-69285-R, BIO2012-0474 and research group BIO-114).
Resumo:
Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.
Resumo:
The aim of this work is focused on the extraction and characterization of the Brazilian seaweed Sargassum filipendula alginate. Alginates obtained at different seasons were characterized by liquid state nuclear magnetic resonance spectroscopy and scanning electron microscopy. The alginate extraction efficiency was about 20%. Different seasons of the year and different stages in the life cycle of Sargassum sp. in southeastern Brazil influenced the M/G and, consequently, the technological properties of extracted alginates.
Resumo:
The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.
Resumo:
Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability) was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil) were visited for the collection of capsules (2008 - 2009). Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm) with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm). Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000) than in lowland (ca. 40,000); longer sporophytic setae in the lowland (ca. 64 mm) than in the highland (ca. 43 mm); and similar sized spores in both areas (ca. 16 µm). Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.
Resumo:
The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3μg/ml) caused a quadriphasic response in PND twitch height whilst at 10μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10μg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10μg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3μg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10μg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression.
Resumo:
Approximately 7.2% of the Atlantic rainforest remains in Brazil, with only 16% of this forest remaining in the State of Rio de Janeiro, all of it distributed in fragments. This forest fragmentation can produce biotic and abiotic differences between edges and the fragment interior. In this study, we compared the structure and richness of tree communities in three habitats - an anthropogenic edge (AE), a natural edge (NE) and the fragment interior (FI) - of a fragment of Atlantic forest in the State of Rio de Janeiro, Brazil (22°50'S and 42°28'W). One thousand and seventy-six trees with a diameter at breast height > 4.8 cm, belonging to 132 morphospecies and 39 families, were sampled in a total study area of 0.75 ha. NE had the greatest basal area and the trees in this habitat had the greatest diameter:height allometric coefficient, whereas AE had a lower richness and greater variation in the height of the first tree branch. Tree density, diameter, height and the proportion of standing dead trees did not differ among the habitats. There was marked heterogeneity among replicates within each habitat. These results indicate that the forest interior and the fragment edges (natural or anthropogenic) do not differ markedly considering the studied parameters. Other factors, such as the age from the edge, type of matrix and proximity of gaps, may play a more important role in plant community structure than the proximity from edges.
Resumo:
Lianas are characteristic, abundant and ecologically important members of tropical forest but they have been neglected in floristics and phytossociological studies. This work presents a floristic survey of the lianas species at Estação Ecológica do Noroeste Paulista (EENP), and a comparison of the list of species recorded in this work with those reported for other fragments of São Paulo state. The EENP (20º48'36'' S and 49º22'50'' W) is at 468 m of altitude and comprises an area of 168,43 ha, divided into three fragments of vegetation. Samples of lianas were collected in the interior and along the edges of the forest fragments. It was identified 105 species: 99 Magnoliopsida (60 genera and 22 families); six Liliopsida (three genera and three families). The richest families in species comprised 59% of the total of lianas sampled. The dendrogram of similarity showed a low similarity between the forest situated in the littoral (Atlantic Forest) and those located in the interior of the state of São Paulo. Some other authors, also analysing the similarity of forest of the interior and Atlantic Forest of São Paulo state, but considering only the trees reported similar result.