930 resultados para robot automation
Resumo:
Creació d’un sistema format per un algoritme genètic que permeti dissenyar de forma automática, les dades dels valors lingüístics d’un controlador fuzzy, per a un robot amb tracció diferencial. Les dades que s’han d’obtenir han de donar-li al robot, la capacitat d’arribar a un destí, evitant els obstacles que vagi trobant al llarg del camí
Resumo:
Durante toda la evolución de la tecnología, se han empleado aparatos interconexionados por cables. Los cables limitan la libertad de movimiento del usuario y pueden captar interferencias entre ellos si la red de cableado es elevada. Mientras avanzaba la tecnología inalámbrica, se ha ido adaptando al equipamiento electrónico a la vez que se iban haciendo cada vez más pequeños. Por esto, se impone la necesidad de utilizarlos como controles a distancia sin el empleo de cables debido a los inconvenientes que estos conllevan. El presente trabajo, pretende unificar tres tecnologías que pueden tener en el futuro una gran afinidad. · Dispositivos basados en el sistema Android. Desde sus inicios, han tenido una evolución meteórica. Se han ido haciendo cada vez más rápidos y mejores. · Sistemas inalámbricos. Los sistemas wifi o bluetooth, se han ido incorporando a nuestras vidas cada vez más y están prácticamente en cualquier aparato. · Robótica. Cualquier proceso de producción incorpora un robot. Son necesarios para hacer muchos trabajos que, aunque el hombre lo puede realizar, un robot reduce los tiempos y la peligrosidad de los procesos. Aunque las dos primeras tecnologías van unidas, ¿quién no tiene un teléfono con conexión wifi y bluetooth?, pocos diseños aúnan estos campos con la Robótica. El objetivo final de este trabajo es realizar una aplicación en Android para el control remoto de un robot, empleando el sistema de comunicación inalámbrico. La aplicación desarrollada, permite controlar el robot a conveniencia del usuario en un entorno táctil/teledirigido. Gracias a la utilización de simulador en ambos lenguajes (RAPID y Android), ha sido posible realizar la programación sin tener que estar presente ante el robot objeto de este trabajo. A través de su progreso, se ha ido evolucionando en la cantidad de datos enviados al robot y complejidad en su procesamiento, a la vez que se ha mejorado en la estética de la aplicación. Finalmente se usó la aplicación desarrollada con el robot, consiguiendo con éxito que realizara los movimientos que eran enviados con la tablet programada.
Resumo:
Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities.
Resumo:
A 10-year experience of our automated molecular diagnostic platform that carries out 91 different real-time PCR is described. Progresses and future perspectives in molecular diagnostic microbiology are reviewed: why automation is important; how our platform was implemented; how homemade PCRs were developed; the advantages/disadvantages of homemade PCRs, including the critical aspects of troubleshooting and the need to further reduce the turnaround time for specific samples, at least for defined clinical settings such as emergencies. The future of molecular diagnosis depends on automation, and in a novel perspective, it is time now to fully acknowledge the true contribution of molecular diagnostic and to reconsider the indication for PCR, by also using these tests as first-line assays.
Resumo:
Peer-reviewed
Resumo:
The target of this thesis is to find out potential of automation maintenance services in Russian industry, especially in the region of St. Petersburg. At the beginning of this study the industrial maintainability and process efficiency are discussed from the point of view of process automation. A survey of the present technology and maintenance methods has been made during five visits to local plants. The results of the interviews are analyzed numerically to clarify the common needs and the potential of automation maintenance services. The most interesting services are evaluated by their required resources to find economically justified solutions for the needs of the industry. As results of this study, some service products that would interest interviewed companies have been introduced. These could be offered to the industry to enhance cost-efficiency and productivity of processes.
Resumo:
La idea del proyecto viene del concepto de “fábricas del futuro”, donde las barreras entre robots y humanos se rompen para que la colaboración entre ambos sea como en un equipo. Para la realización de este proyecto se ha utilizado el brazo robótico IRB120 de la marca ABB de 6 Grados de libertad, Matlab y el software Robot Studio. El Objetivo principal de este proyecto es establecer el protocolo de comunicación trabajador-robot mediante imágenes. El trabajador debería poder controlar el robot mediante dibujos realizados en la mesa de trabajo. En el desarrollo de la comunicación trabajador-robot cabe distinguir tres partes: · El análisis y tratamiento de imágenes para el cual se ha utilizado el software Matlab. · Transmisión de los datos desde Matlab al robot. · Programación de las acciones a realizar por el robot mediante el software “Robot Studio”. Con el protocolo de comunicación desarrollado y las imágenes realizadas por el trabajador el robot es capaz de detectar lo siguiente: · la herramienta que debe utilizar (rotulador, boli o ventosa) · si lo que tiene que dibujar en la mesa de trabajo son puntos o trazo continuo. · la localización de los puntos o del trazo continuo en la mesa de trabajo. Se ha alcanzado el objetivo propuesto con éxito, el protocolo de comunicación trabajador-robot mediante imágenes ha sido establecido. Mediante el análisis y tratamiento de imágenes se puede conseguir la información necesaria para que el robot pueda ejecutar las acciones requeridas por el trabajador.
Resumo:
Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Resumo:
Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.
Resumo:
The productivity, quality and cost efficiency of welding work are critical for metal industry today. Welding processes must get more effective and this can be done by mechanization and automation. Those systems are always expensive and they have to pay the investment back. In this case it is really important to optimize the needed intelligence and this way needed automation level, so that a company will get the best profit. This intelligence and automation level was earlier classified in several different ways which are not useful for optimizing the process of automation or mechanization of welding. In this study the intelligence of a welding system is defined in a new way to enable the welding system to produce a weld good enough. In this study a new way is developed to classify and select the internal intelligence level of a welding system needed to produce the weld efficiently. This classification contains the possible need of human work and its effect to the weld and its quality but does not exclude any different welding processes or methods. In this study a totally new way is developed to calculate the best optimization for the needed intelligence level in welding. The target of this optimization is the best possible productivity and quality and still an economically optimized solution for several different cases. This new optimizing method is based on grounds of product type, economical productivity, the batch size of products, quality and criteria of usage. Intelligence classification and optimization were never earlier made by grounds of a made product. Now it is possible to find the best type of welding system needed to welddifferent types of products. This calculation process is a universal way for optimizing needed automation or mechanization level when improving productivity of welding. This study helps the industry to improve productivity, quality and cost efficiency of welding workshops.
Resumo:
Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.