937 resultados para pulse compression
Resumo:
The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.
Resumo:
I extend Spence's signaling model by assuming that some workers are overconfident-they underestimate their marginal cost of acquiring education-and some are underconfident. Firms cannot observe workers' productive abilities and beliefs but know the fractions of high-ability, overconfident, and underconfident workers. I find that biased beliefs lower the wage spread and compress the wages of unbiased workers. I show that gender differences in self-confidence can contribute to the gender pay gap. If education raises productivity, men are overconfident, and women underconfident, then women will, on average, earn less than men. Finally, I show that biased beliefs can improve welfare.
Resumo:
The strength properties of paper coating layer are very important in converting and printing operations. Too great or low strength of the coating can affect several problems in printing. One of the problems caused by the strength of coating is the cracking at the fold. After printing the paper is folded to final form and the pages are stapled together. In folding the paper coating can crack causing aesthetic damage over printed image or in the worst case the centre sheet can fall off in stapling. When folding the paper other side undergoes tensile stresses and the other side compressive stresses. If the difference between these stresses is too high, the coating can crack on the folding. To better predict and prevent cracking at the fold it is good to know the strength properties of coating layer. It has measured earlier the tensile strength of coating layer but not the compressive strength. In this study it was tried to find some way to measure the compressive strength of the coating layer and investigate how different coatings behave in compression. It was used the short span crush test, which is used to measure the in-plane compressive strength of paperboards, to measure the compressive strength of the coating layer. In this method the free span of the specimen is very small which prevent buckling. It was measured the compressive strength of free coating films as well as coated paper. It was also measured the tensile strength and the Bendtsen air permeance of the coating film. The results showed that the shape of pigment has a great effect to the strength of coating. Platy pigment gave much better strength than round or needle-like pigment. On the other hand calcined kaolin, which is also platy but the particles are aggregated, decreased the strength substantially. The difference in the strength can be explained with packing of the particles which is affecting to the porosity and thus to the strength. The platy kaolin packs up much better than others and creates less porous structure. The results also showed that the binder properties have a great effect to the compressive strength of coating layer. The amount of latex and the glass transition temperature, Tg, affect to the strength. As the amount of latex is increasing, the strength of coating is increasing also. Larger amount of latex is binding the pigment particles better together and decreasing the porosity. Compressive strength was increasing when the Tg was increasing because the hard latex gives a stiffer and less elastic film than soft latex.
Resumo:
This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4
Resumo:
The purpose of this thesis was to investigate the compression of filter cakes at high filtration pressures with five different test materials and to compare the energy consumption of high pressure compression with the energy consumption of thermal drying. The secondary target of this study was to investigate the particle deformation of test materials during filtration and compression. Literature part consists of basic theory of filtration and compression and of the basic parameters that influence the filtration process. There is also a brief description about all of the test materials including their properties and their industrial production and processing. Theoretical equations for calculating the energy consumptions of the filtrations at different conditions are also presented. At the beginning of the experiments at experimental part, the basic filtration tests were done with all the five test materials. Filtration tests were made at eight different pressures, from 6 bars up to 100 bars, by using piston press pressure filter. Filtration tests were then repeated by using a cylinder with smaller slurry volume than in the first series of filtration tests. Separate filtration tests were also done for investigating the deformation of solid particles during filtration and for finding the optimal curve for raising the filtration pressure. Energy consumption differences between high pressure filtration and ideal thermal drying process were done partly experimentally and partly by using theoretical calculation equations. By comparing these two water removal methods, the optimal ranges for their use were found considering their energy efficiency. The results of the measurements shows that the filtration rate increased and the moisture content of the filter cakes decreased as the filtration pressure was increased. Also the porosity of the filter cakes mainly decreased when the filtration pressure was increased. Particle deformation during the filtration was observed only with coal particles.
Resumo:
Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry places tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R245fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.
Resumo:
An outbreak of compressive myelopathy in cattle associated with the improper use of an oil vaccine is described. Neurological signs were observed in 25 out of 3,000 cattle after 60 days of being vaccinated against foot and mouth disease. The clinical picture was characterized by progressive paralysis of the hind limbs, difficulty in standing up, and sternal recumbency during the course of 2-5 months. A filling defect between the L1 and L3 vertebrae was seen through myelography performed in one of the affected animals. A yellow-gray, granular and irregular mass was observed in four necropsied animals involving the spinal nerve roots and epidural space of the lumbar (L1-L4) spinal cord; the mass was associated with a whitish oily fluid. This fluid was also found in association with necrosis of the longissimus dorsi muscle. Microscopic changes in the epidural space, nerve roots, and spinal musculature were similar and consisted of granulomas or pyogranulomas around circular unstained spaces (vacuoles). These spaces were located between areas of severe diffuse hyaline necrosis of muscle fibers and resembled the drops of oil present in the vaccine.
Resumo:
This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC) of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis), from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.
Resumo:
Pulse Response Based Control (PRBC) is a recently developed minimum time control method for flexible structures. The flexible behavior of the structure is represented through a set of discrete time sequences, which are the responses of the structure due to rectangular force pulses. The rectangular force pulses are given by the actuators that control the structure. The set of pulse responses, desired outputs, and force bounds form a numerical optimization problem. The solution of the optimization problem is a minimum time piecewise constant control sequence for driving the system to a desired final state. The method was developed for driving positive semi-definite systems. In case the system is positive definite, some final states of the system may not be reachable. Necessary conditions for reachability of the final states are derived for systems with a finite number of degrees of freedom. Numerical results are presented that confirm the derived analytical conditions. Numerical simulations of maneuvers of distributed parameter systems have shown a relationship between the error in the estimated minimum control time and sampling interval
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.
Resumo:
High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.