975 resultados para polymorphonuclear leukocyte
Resumo:
The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.
Resumo:
The conformationally restricted CHO-L-Met-Xxx-L-Phe-OY (where Xxx = Aib, Ac3c, Ac5c, Ac6c, and Ac7c; Y = H, Me) tripeptides, analogs of the chemoattractant CHO-L-Met-L-Leu-L-Phe-OH, have been synthesized in solution by classical methods and fully characterized. Compounds were compared to determine the combined effect of backbone conformational preferences and side-chain bulkiness on the relation of three-dimensional structure to biological activity. Each peptide was tested for its ability to induce granule enzyme secretion from rabbit peritoneal polymorphonuclear leukocytes. In parallel, a conformational analysis on the CHO-blocked peptide and their tertbutyloxycarbonylated synthetic precursors was performed in the crystal state and in solution using X-ray diffraction, infrared absorption, and 1H nuclear magnetic resonance. The biological and conformational data are discussed in relation to the proposed model of the chemotactic peptide receptor of rabbit neutrophils.
Resumo:
Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.
Resumo:
The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.
Resumo:
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.
Resumo:
Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional alpha beta T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the ``unconventional'' gamma delta T lymphocytes. We observed that gamma delta T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of gamma delta T cells with (10)panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with (10)panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that gamma delta T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-alpha and IFN-gamma in gamma delta T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human gamma delta T cells. J. Leukoc. Biol. 92: 787-794; 2012.
Resumo:
Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.
Resumo:
T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.
Resumo:
Forced dissociation of selectin-ligand bonds is crucial to such biological processes as leukocyte recruitment, thrombosis formation, and tumor metastasis. Although the bond rupture has been well known at high loading rate r(f) (>= 10(2) pN/s), defined as the product of spring constant k and retract velocity v, how the low r(f) (< 10(2) pN/s) or the low k regulates the bond dissociation remains unclear. Here an optical trap assay was used to quantify the bond rupture at r(f) <= 20 pN/s with low k (similar to 10(-3)-10(-2) pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture force f retained the similar values when r(f) increased up to 20 pN/s. It was also found that f varied with different combinations of k and v even at the same r(f). The most probable force, f
Resumo:
Cell adhesion is crucial to many pathophysiological processes, such as inflammatory reaction and tumor metastasis. It is mediated by specific interactions between receptors and ligands, and provides the physical linkages among cells. For example, interactions between selectins and glycoconjugate ligands mediate leukocyte initially tethering to and subsequently rolling on vascular surfaces in sites of inflammation or injury, which is determined by their fast kinetic rates. To mediate cell adhesion, the interacting receptors and ligands must anchor to apposing surfaces of two cells or a cell and the substratum, i.e. , the so-called two-dimensional (2D) binding, which differs from interactions in the fluid phase, i.e. , the three-dimensional (3D) binding. How structural variations and surface environments of interacting molecules affect their 2D kinetics, and how external forces manipulate their dissociation has little been known quantitatively, and nowadays attracts more and more attentions.
Resumo:
L-selectin plays a crucial role in inflammation cascade by initiating the tethering and rolling of leukocytes on endothelium wall. While many L-selectin molecules are rapidly shed from the cell surface upon activation, the remaining membrane-anchored L-selectin may still play an important role in regulating leukocyte rolling and adhesion with different binding kinetics. Here we developed an in vitro model to activate Jurkat cells via interlukin-8 (IL-8) and quantified the two-dimensional (2D) binding kinetics, using a micropipette aspiration assay, of membrane-anchored L-selectin to P-selectin glycoprotein ligand 1 (PSGL-1) ligand coupled onto human red blood cells (RBCs). The data indicated that L-selectin shedding reduced the amount of membrane-anchored L-selectin and lowered both its reverse and forward rates. These results suggested that the rolling dynamics of activated leukocytes was determined by two opposite impacts: reducing the surface presentation would enhance the rolling but lowering the kinetic rates would decrease the rolling. This finding provides a new insight into understanding how L-selectin shedding regulates leukocyte rolling and adhesion.
Resumo:
Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta(2) subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Pesquisas recentes têm demonstrado que a periodontite pode modificar a concentração sanguínea de uma série de tipos celulares e substâncias bioquímicas, que são considerados fatores de risco para doenças cardiovasculares. Este trabalho tem como objetivo avaliar a associação entre a periodontite crônica e marcadores de risco para doença cardiovascular. No Estudo I foram examinados 100 pacientes aparentemente saudáveis sistemicamente, sendo 66 portadores de periodontite crônica e 34 pacientes controle, sem doença periodontal. Exames periodontais e exames sanguíneos foram realizados, e obtidas as espessuras das camadas íntima-média (IMT) da artéria carótida. No Estudo II, 66 pacientes participantes do Estudo I, diagnosticados com periodontite crônica, foram aleatoriamente submetidos a tratamento periodontal imediato (Grupo Teste, n=33) ou tratamento periodontal retardado (Grupo Controle, n=33). Os dados colhidos no Estudo I foram registrados como pré-tratamento (T0). Novos exames clínicos periodontais e laboratoriais foram realizados no período de 2 meses (T2) e 6 meses (T6) após os exames iniciais (Grupo Controle) ou conclusão do tratamento periodontal (Grupo Teste). Os dados colhidos foram analisados através de testes estatísticos. Os resultados mostraram que pacientes com periodontite crônica quando comparados ao grupo controle, apresentaram valores médios significativamente mais elevados na contagem total de hemácias (p<0,001), hemoglobina (p<0,001), hematócrito (p<0,001), contagem de plaquetas (p=0,019), velocidade de hemossedimentação (p<0,001), proteína C-reativa (p<0,001). Os níveis de HDL-colesterol foram significativamente mais baixos nos pacientes com periodontite crônica quando comparados ao grupo controle (p<0,001). As camadas íntima-média da parede da artéria carótida esquerda foram significativamente mais espessas nos pacientes com periodontite crônica quando comparados ao grupo controle (p=0,049). Os indíviduos com periodontite crônica também apresentaram 3,26 vezes mais chances de possuir Síndrome Metabólica do que aqueles indivíduos que não possuem doença peridontal (IC 95%: 1,8-5,9). No Estudo II, quando comparados os valores médios dos dados hematológicos após tratamento, no grupo teste, foi possível observar melhora estatisticamente significativa, entre T0/T2, dos valores de VHS e triglicerídeos (p=0,002; p=0,004; respectivamente). Redução nos valores médios da contagem total de leucócitos, VHS, CRP, transaminase glutâmico pirúvica, colesterol total e triglicerídeos, entre T0/T6, foi verificada no grupo teste pós-tratamento (p=0,028; p<0,001; p<0,001; p=0,010; p<0,001; p=0,015, respectivamente). Os resultados indicaram que a periodontite crônica severa está associada com níveis elevados de marcadores da inflamação e trombogênese, além de alterações no perfil lipídico em indivíduos sistemicamente saudáveis, podendo atuar como possível fator de risco para as doenças cardiovasculares. O tratamento periodontal não-cirúrgico mostrou-se eficaz na redução dos níveis dos marcadores sistêmicos da inflamação e na melhora do perfil lipídico em indivíduos com doença periodontal severa, consequentemente, reduzindo o risco de doenças cardiovasculares.
Resumo:
O objetivo deste estudo foi avaliar o impacto do tratamento periodontal não cirúrgico sobre a atividade de elastase e o volume de fluido gengival nos pacientes portadores de periodontite crônica e agressiva generalizadas. Foram avaliados 18 pacientes com periodontite crônica (idade média 48,6 DP 7,5 anos), e 11 com periodontite agressiva (idade média 27,9 DP 6,54 anos). Foram utilizados os parâmetros clínicos de avaliação de profundidade de bolsa à sondagem (PB) (mm), nível de inserção (NI) (mm) e sangramento à sondagem (SS). As medidas clínicas e as amostras de fluido gengival foram colhidas a partir dos cinco sítios mais profundos (P) e de cinco sítios rasos com gengivite (G) de cada paciente, antes e 90 dias após o término do tratamento. As etapas clínicas obedeceram ao seguinte cronograma: seleção e exame periodontal; coleta de fluido gengival; tratamento periodontal; reavaliação, compreendendo o exame periodontal e coleta de fluido gengival. O tratamento levou, em média, 4 sessões de 40 minutos cada por paciente, com intervalo de 1 semana entre elas. As consultas para reavaliação foram feitas 90 dias após o término do tratamento. O teste de Wilcoxon foi utilizado para comparar os dados antes e depois do tratamento e o teste não pareado de Mann-Whitney U-test foi utilizado para comparar os grupos de periodontite crônica e agressiva. A amostra analisada antes e após o tratamento não apresentou diferenças significativas entre o grupo com periodontite crônica e agressiva, que responderam de forma similar a todos os indicadores avaliados, exceto para a profundidade de bolsa à sondagem nos sítios rasos com gengivite (p = 0,039) e para o sangramento à sondagem (p = 0,021) nos sítios profundos, ambos mais reduzidos na periodontite crônica após o tratamento. A elastase apresentou, após o tratamento, redução significativa nos sítios profundos, para a periodontite crônica (p = 0,012) e agressiva (p = 0,02). Em relação ao volume de fluido gengival, houve significativa redução após o tratamento nos pacientes com periodontite crônica e agressiva, tanto nos sítios rasos (p = 0,03 e p = 0,03) como nos profundos (p ˂ 0,001 e p = 0,003), respectivamente. Concluindo, os grupos com periodontite crônica e agressiva generalizadas comportaram- se de maneira semelhante frente à terapia mecânica não cirúrgica. Ainda, a terapia periodontal mecânica não cirúrgica mostrou redução significativa do volume de fluido gengival em todos os sítios analisados, e da atividade neutrofílica, nos sítios profundos, associada a reduções significativas em todos os indicadores clínicos analisados após o tratamento.