998 resultados para pH-sensitivity
Resumo:
OBJECTIVE: The rapid growth of the rubella virus in RC-IAL² with development of cytopathic effect, in response to rubella virus infection, is described. For purposes of comparison, the rubella virus RA-27/3 strain was titered simultaneously in the RC-IAL, Vero, SIRC and RK13 cell lines. METHODS: Rubella virus RA-27/3 strain are inoculated in the RC-IAL cell line (rabbit Kidney, Institute Adolfo Lutz). Plates containing 1.5x10(5) cells/ml of RC-IAL line were inoculated with 0.1ml s RA-27/3 strain virus containing 1x 10(4)TCID50/0.1ml. A 25% cytopathic effect was observed after 48 hours and 100% after 96 hours. The results obtained were compared to those observed with the SIRC, Vero and RK13 cell lines. Rubella virus was detected by immunohistochemistry. RESULTS: With the results, it was possible to conclude that the RC-IAL cell line is a very good substrate for culturing rubella virus. The cells inoculated with rubella virus were examined by phase contrast microscopy and showed the characteristic rounded, bipolar and multipolar cells. The CPE in RC-IAL was observed in the first 48 hours and the curve of the increased infectivity was practically the same as observed in other cell lines. CONCLUSIONS: These findings are important since this is one the few cell lines described in the literature with a cytopathic effect. So it can be used for antigen preparation and serological testing for the diagnosis of specific rubella antibodies.
Resumo:
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
Mestrado em Medicina Nuclear.
Resumo:
In studies assessing the effects of a given exposure variable and a specific outcome of interest, confusion may arise from the mistaken impression that the exposure variable is producing the outcome of interest, when in fact the observed effect is due to an existing confounder. However, quantitative techniques are rarely used to determine the potential influence of unmeasured confounders. Sensitivity analysis is a statistical technique that allows to quantitatively measuring the impact of an unmeasured confounding variable on the association of interest that is being assessed. The purpose of this study was to make it feasible to apply two sensitivity analysis methods available in the literature, developed by Rosenbaum and Greenland, using an electronic spreadsheet. Thus, it can be easier for researchers to include this quantitative tool in the set of procedures that have been commonly used in the stage of result validation.
Resumo:
O presente trabalho tem como objectivo o desenvolvimento de um método analítico, baseado na voltametria de onda quadrada (SWV), para a análise de ciprofloxacina (CIP) em produtos farmacêuticos e em processos de remediação. Para o desenvolvimento do método voltamétrico foram utilizadas duas células voltamétricas: a célula clássica (utilizando um eléctrodo de trabalho de carbono vítreo - GCE) e um eléctrodo de carbono impresso (SPCE). Após a optimização dos parâmetros da SWV, pH (3,04), frequência (400Hz), incremento de potencial (6 mV) e amplitude do impulso de potencial (40 mV), procedeu-se a validação dos métodos, obtendo-se zonas lineares entre a concentração de CIP e a intensidade de corrente de pico de 5,0×10-6 a 6,0×10-5 mol/L (GCE) e de 1,0×10-5 a 4,0×10-5 mol/L (SPCE) e limites de detecção de 9,48×10-6 mol/L (GCE) e 2,13×10-6 mol/L (SPCE). Verificou-se que a sensibilidade, a precisão e a selectividade são superiores para o SPCE, sendo por isso esta a célula mais adequada para proceder à análise da CIP em produtos farmacêuticos. O SPCE foi aplicado com sucesso à análise de CIP num produto farmacêutico. Para o tratamento de soluções aquosas contendo a CIP foram testados dois oxidantes: o permanganato de potássio e o peróxido de hidrogénio. Para o peróxido de hidrogénio os resultados obtidos foram inconclusivos. No caso do permanganato de potássio, os resultados mostram que a degradação da ciprofloxacina depende da concentração do oxidante. Para uma concentração de CIP de 3,00×10-4 mol/L uma degradação rápida foi obtida com o uso de 6,00×10-3 mol/L de permanganato de potássio. Na aplicação do permanganato na remediação de solos verificou-se que no caso de solos húmicos a ciprofloxacina é adsorvida pelo solo, não sendo possível confirmar a ocorrência da reacção de degradação. No caso de solos arenosos verificou-se que a ciprofloxacina foi rapidamente degradada pelo permanganato de potássio.
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μgmL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μgmL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
Acyl-ghrelin has been reported to increase food intake and adiposity and it is the best studied of the orexigenic gastrointestinal hormones. On the other hand, desacyl-ghrelin – DAG (the unacylated form of the hormone) has been reported as a potential player on carbohydrate metabolism. However, the potential impact of DAG on glucose homeostasis remains uncertain. In this study we aim to assess the association between DAG and insulin sensitivity.
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mVΔlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL 1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (47 mV/Dlog([ENR]/ M), wide linear range (1.0×10-5–1.0×10-3 M), low detection limit (0.9 µg mL-1), and a stable baseline for a 5×10-2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host–guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42–63 mV/decade and 2.5–31.3 µg/mL, respectively. Sensors were independent from the pH of test solutions within 2–5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10−5 to 1.0×10−2 mol/L), low detection limit (19.8 µg/mL), and a stable baseline for a 5×10−3M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy technique group (n = 23); and 2 control groups, wait-and-see group (n = 25) and placebo group 21 (n = 22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as 22 pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, 23 immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4 × 5 mixed repeated- 24 measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. 25 Results: A group-by-time interaction was detected in all variables (P b .01), except contralateral rotation. The 26 immediate effect sizes of the contralateral flexion, ipsilateral rotation, and pressure pain threshold were large for 3 27 experimental groups. Nevertheless, after 24 hours and 1 week, only IC group maintained the effect size. 28 Conclusions: Manual techniques on upper trapezius with latent trigger point seemed to improve the cervical range of 29 motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. (J Manipulative Physiol 301 Ther 2013;xx:1-10)
Resumo:
A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.
Resumo:
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.