973 resultados para organic solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu(II) ions previously coordinated with typical electroplating organic additives were investigated as an alternative source of metal for plating bath. The coordination complexes were isolated from reaction between CuSO(4) and organic additives as ligands (oxalate ion, ethylenediamine or imidazole). Deposits over 1010 steel were successfully obtained from electroplated baths using the complexes without any addition of free additives, at pH = 4.5 (H(2)SO(4)/Na(2)SO(4)). These deposits showed better morphologies than deposits obtained from CuSO(4) solution either in the absence or presence of oxalate ion as additive (40 mmol L(-1)), at pH = 4.5 (H(2)SO(4)/Na(2)SO(4))It is suggestive that the starting metal plating coordinated with additives influences the electrode position processes, providing deposits with corrosion potentials shifted over + 200 mV in 0.5 mol L(-1) NaCl (1 mV s(-1)). The resistance against corrosion is sensitive to the type of additive-complex used as precursor. The complex with ethylenediamine presented the best deposit results with the lowest pitting potential (-0.27 V vs 3.0 mol L(-1) CE). It was concluded that the addition of free additives to the electrodeposition baths is not necessary when working with previously coordinated additives. Thus, the complexes generated in ex-situ are good alternatives as plating precursors for electrodeposition bath. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article proposes a simple and sensitive HPLC method with photo-diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250 4.6 mm, 5mm) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n55) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97–105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rose ´ and fortified wines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic Rhodic Acrudox, a sandy clay loam Anionic Xanthic Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 in layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic Rhodic Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cation mobility in acidic soils with low organic-matter contents depends not only on sorption intensity but also on the solubility of the species present in soil solution. In general, the following leaching gradient is observed: potassium (K+) magnesium (Mg2+) calcium (Ca2+) aluminum (Al3+). To minimize nutrient losses and ameliorate the subsoil, soil solution must be changed, favoring higher mobility of M2+ (metal ions) forms. This would be theoretically possible if plant residues were kept on the soil surface. An experiment was conducted in pots containing a Distroferric Red Latosol, with soil solution extractors installed at two depths. Pearl millet, black oat, and oilseed radish residues were laid on the soil surface, and nitrogen (as ammonium nitrate) was applied at rates ranging from 0 to 150mgkg-1. Corn was grown for 52 days. Except for K+ and ammonium (NH4 +), nitrogen rates and plant residues had little effect upon the concentrations and forms of the elements in the soil solution. Presence of cover crop residues on soil surface decreased the effect of nitrogen fertilizer on Ca leaching. More than 90% of the Ca2+, Mg2+, and K+ were found as free ions. The Al3+ was almost totally complexed as Al(OH3)0. Nitrogen application increased the concentrations of almost all the ions in soil solution, including Al3+, although there was no modification in the leaching gradient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organo-clay used in this work was prepared from a Na-montmorillonite (Wyoming-USA deposit) by treatment with water solution of hexadecyltrimethylammonium cations. As organo-clays exhibit strong sorptive capabilities for organic molecules, 2-mercapto-5-amino-1,3,4-thiadiazole organofunctional groups, with potential usefulness in chemical analysis, were incorporated on its solid surface. The physically adsorbed reagent did not present any restrictions in coordinating with several metal ions on the surface. The resultant organo-clay complex exhibited strong sorptive capability for removing mercury ions from water in which other metals and ions were also present. The purpose of this work is to study the selective separation of mercury(II) from aqueous solution using the organo-clay complex, measured by batch and chromatographic column techniques, and its application as preconcentration agent in a chemically modified carbon paste electrode for determination of mercury(II) in aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < PH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbOx (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at PH 2.2 and potential of +2.4 V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 K PH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1 h of electrolysis the results indicated total color removal and 37% of mineralization. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L-1 Fe2+ and 100 mmol L-1 H2O2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultrapure water reached concentrations below the limit of detection (0.19 mu mol C L-1). Filtered (0.7 mu m) rain samples maintained the DOC integrity for at least 7 days when stored at 4 degrees C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally. (C) 2007 Elsevier Ltd. All rights reserved.