998 resultados para modulação de pulsos em RMN
Estudo preliminar da influência da texturização por laser de pulsos ultracurtos na força de usinagem
Resumo:
Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided
Resumo:
2016
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The biological fixation between the dental implant surfaces and jaw bones should be considered a prerequisite for the long-term success of implant-supported prostheses. In this context, the implant surface modifications gained an important and decisive place in implant research over the last years. As the most investigated topic in, it aided the development of enhanced dental treatment modalities and the expansion of dental implant use. Nowadays, a large number of implant types with a great variety of surface properties and other features are commercially available and have to be treated with caution. Although surface modifications have been shown to enhance osseointegration at early implantation times, for example, the clinician should look for research evidence before selecting a dental implant for a specific use. This paper reviews the literature on dental implant surfaces by assessing in vitro and in vivo studies to show the current perspective of implant development. The review comprises quantitative and qualitative results on the analysis of bone-implant interface using micro and nano implant surface topographies. Furthermore, the perspective of incorporating biomimetic molecules (e.g.: peptides and bone morphogenetic proteins) to the implant surface and their effects on bone formation and remodeling around implants are discussed.
Resumo:
Carbon and nitrogen biogeochemical cycles in savannas are strongly regulated by the seasonal distribution of precipitation and pulses of nutrients released during the wetting of the dry soil and are critical to the dynamics of microorganisms and vegetation. The objective of this study was to investigate the spatial and temporal variability of C and N isotope ratios as indicators of the cycling of these elements in a cerrado sensu stricto area, within a protected area in a State Park in the state of São Paulo, Brazil. The foliar δ13C and δ15N values varied from -33.6 to -24.4 ‰ and -2.5 to 4.5 ‰, respectively. The δ13C values showed a consistent relationship with canopy height, revealing the importance of structure of the canopy over the C isotopic signature of the vegetation. Carbon isotopic variations associated with the length of the dry season indicated the importance of recent fixed C to the integrated isotopic signature of the leaf organic C. The studied Cerrado species showed a depleted foliar δ15N, but a wide range of foliar Nitrogen with no difference among canopy heights. However, seasonal variability was observed, with foliar δ15N values being higher in the transition period between dry and rainy seasons. The variation of the foliar C and N isotope ratios presented here was consistent with highly diverse vegetation with high energy available but low availability of water and N.
Resumo:
Er:YAG laser has been studied as a potential tool for restorative dentistry due to its ability to selectively remove oral hard tissue with minimal or no thermal damage to the surrounding tissues. The purpose of this study was to evaluate in vitro the tensile bond strength (TBS) of an adhesive/composite resin system to human enamel surfaces treated with 37% phosphoric acid, Er:YAG laser (lambda=2.94 mum) with a total energy of 16 J (80 mJ/pulse, 2Hz, 200 pulses, 250 ms pulse width), and Er:YAG laser followed by phosphoric acid etching. Analysis of the treated surfaces was performed by scanning electron microscopy (SEM) to assess morphological differences among the groups. TBS means (in MPa) were as follows: Er:YAG laser + acid (11.7 MPa) > acid (8.2 MPa) > Er:YAG laser (6.1 MPa), with the group treated with laser+acid being significantly from the other groups (p=0.0006 and p= 0.00019, respectively). The groups treated with acid alone and laser alone were significantly different from each other (p=0.0003). The SEM analysis revealed morphological changes that corroborate the TBS results, suggesting that the differences in TBS means among the groups are related to the different etching patterns produced by each type of surface treatment. The findings of this study indicate that the association between Er:YAG laser and phosphoric acid can be used as a valuable resource to increase bond strength to laser-prepared enamel.
Resumo:
The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.