858 resultados para laser-acceleration. high intensity lasers, radiation-pressure acceleration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM The effect of long-term high-intensity statin therapy on coronary atherosclerosis among patients with acute ST-segment elevation myocardial infarction (STEMI) is unknown. The aim of this study was to quantify the impact of high-intensity statin therapy on plaque burden, composition, and phenotype in non-infarct-related arteries of STEMI patients undergoing primary percutaneous coronary intervention (PCI). METHODS AND RESULTS Between September 2009 and January 2011, 103 STEMI patients underwent intravascular ultrasonography (IVUS) and radiofrequency ultrasonography (RF-IVUS) of the two non-infarct-related epicardial coronary arteries (non-IRA) after successful primary PCI. Patients were treated with high-intensity rosuvastatin (40 mg/day) throughout 13 months and serial intracoronary imaging with the analysis of matched segments was available for 82 patients with 146 non-IRA. The primary IVUS end-point was the change in per cent atheroma volume (PAV). After 13 months, low-density lipoprotein cholesterol (LDL-C) had decreased from a median of 3.29 to 1.89 mmol/L (P < 0.001), and high-density lipoprotein cholesterol (HDL-C) levels had increased from 1.10 to 1.20 mmol/L (P < 0.001). PAV of the non-IRA decreased by -0.9% (95% CI: -1.56 to -0.25, P = 0.007). Patients with regression in at least one non-IRA were more common (74%) than those without (26%). Per cent necrotic core remained unchanged (-0.05%, 95% CI: -1.05 to 0.96%, P = 0.93) as did the number of RF-IVUS defined thin cap fibroatheromas (124 vs. 116, P = 0.15). CONCLUSION High-intensity rosuvastatin therapy over 13 months is associated with regression of coronary atherosclerosis in non-infarct-related arteries without changes in RF-IVUS defined necrotic core or plaque phenotype among STEMI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Levels of inflammatory biomarkers associate with changes of coronary atheroma burden in statin-treated patients with stable coronary artery disease. This study sought to determine changes of plaque composition in vivo in relation to high-sensitivity C-reactive protein (hs-CRP) levels in patients with ST-elevation myocardial infarction (STEMI) receiving high-intensity statin therapy. METHODS The IBIS-4 study performed serial (baseline and 13-month), 2-vessel intravascular ultrasound (IVUS) and radiofrequency-IVUS of the non-infarct-related arteries in patients with STEMI treated with high-intensity statin therapy. The present analysis included 44 patients (80 arteries) with serial measurements of hs-CRP. RESULTS At follow-up, median low-density lipoprotein cholesterol (LDL-C) levels decreased from 126 to 77 mg/dl, HDL-C increased from 44 to 47 mg/dl, and hs-CRP decreased from 1.6 to 0.7 mg/L. Regression of percent atheroma volume (-0.99%, 95% CI -1.84 to -0.14, p = 0.024) was accompanied by reduction of percent fibro-fatty (p = 0.04) and fibrous tissue (p < 0.001), and increase in percent necrotic core (p = 0.006) and dense calcium (p < 0.001). Follow-up levels of hs-CRP, but not LDL-C, correlated with changes in percent necrotic core (p = 0.001) and inversely with percent fibrous tissue volume (p = 0.008). Similarly, baseline-to-follow-up change of hs-CRP correlated with the change in percent necrotic core volume (p = 0.02). CONCLUSIONS In STEMI patients receiving high-intensity statin therapy, stabilization of VH-IVUS-defined necrotic core was confined to patients with lowest on-treatment levels and greatest reduction of hs-CRP. Elevated CRP levels at follow-up may identify progression of high-risk coronary plaque composition despite intensive statin therapy and overall regression of atheroma volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS To investigate exercise-related fuel metabolism in intermittent high-intensity (IHE) and continuous moderate intensity (CONT) exercise in individuals with type 1 diabetes mellitus. METHODS In a prospective randomised open-label cross-over trial twelve male individuals with well-controlled type 1 diabetes underwent a 90 min iso-energetic cycling session at 50% maximal oxygen consumption ([Formula: see text]), with (IHE) or without (CONT) interspersed 10 s sprints every 10 min without insulin adaptation. Euglycaemia was maintained using oral (13)C-labelled glucose. (13)C Magnetic resonance spectroscopy (MRS) served to quantify hepatocellular and intramyocellular glycogen. Measurements of glucose kinetics (stable isotopes), hormones and metabolites complemented the investigation. RESULTS Glucose and insulin levels were comparable between interventions. Exogenous glucose requirements during the last 30 min of exercise were significantly lower in IHE (p = 0.02). Hepatic glucose output did not differ significantly between interventions, but glucose disposal was significantly lower in IHE (p < 0.05). There was no significant difference in glycogen consumption. Growth hormone, catecholamine and lactate levels were significantly higher in IHE (p < 0.05). CONCLUSIONS/INTERPRETATION IHE in individuals with type 1 diabetes without insulin adaptation reduced exogenous glucose requirements compared with CONT. The difference was not related to increased hepatic glucose output, nor to enhanced muscle glycogen utilisation, but to decreased glucose uptake. The lower glucose disposal in IHE implies a shift towards consumption of alternative substrates. These findings indicate a high flexibility of exercise-related fuel metabolism in type 1 diabetes, and point towards a novel and potentially beneficial role of IHE in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02068638 FUNDING: Swiss National Science Foundation (grant number 320030_149321/) and R&A Scherbarth Foundation (Switzerland).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, educational software for intuitive understanding of the basic dynamic processes of semiconductor lasers is presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of thpoint. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the “chirp” phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters,consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trata de una conferencia invitada que ganó premio a la mejor comunicación científica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CPV receivers are made of materials with very different lineal expansion coefficients. Strong variations in DNI due to the passage of clouds can cause sudden temperature changes that creates mechanical stress. For common solder and metal filled polymers the plastic limit could be reached causing substantial fatigue. The best forecast of receiver reliability is therefore achieved by applying an intermittent light source with nominal irradiance level and a number of cycles equal to the expected cloud passages for a given site. The UPM has developed specialized equipment, dubbed the LYSS (Light cYcling Stressing Source), for carrying out such experiments. The small thermal capacity of receivers allows simulating more than 25000 cycles per week. The number of deep transients expected for Madrid in 30 years operation, based on available data, is about 45000. We are currently using the system to cycle a ?Ge/Ag Epoxy/aluminum? receiver, which shows no degradation after 20000 cycles. The equipment can cast up to 200 and 70 W/cm2 on 0.1 and 1 cm2 cells, respectively.