984 resultados para large infrastructure
Resumo:
Dissertação para obtenção do grau de Mestre em Música - Interpretação Artística
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the learning gains obtained by students using them, especially with a large number of students, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some preliminary results concerning the use of a remote laboratory, known as VISIR, in a large undergraduate course on Applied Physics, with over 500 students enrolled.
Resumo:
Dependability is a critical factor in computer systems, requiring high quality validation & verification procedures in the development stage. At the same time, digital devices are getting smaller and access to their internal signals and registers is increasingly complex, requiring innovative debugging methodologies. To address this issue, most recent microprocessors include an on-chip debug (OCD) infrastructure to facilitate common debugging operations. This paper proposes an enhanced OCD infrastructure with the objective of supporting the verification of fault-tolerant mechanisms through fault injection campaigns. This upgraded on-chip debug and fault injection (OCD-FI) infrastructure provides an efficient fault injection mechanism with improved capabilities and dynamic behavior. Preliminary results show that this solution provides flexibility in terms of fault triggering and allows high speed real-time fault injection in memory elements
Resumo:
Weblabs are spreading their influence in Science and Engineering (S&E) courses providing a way to remotely conduct real experiments. Typically, they are implemented by different architectures and infrastructures supported by Instruments and Modules (I&Ms) able to be remotely controlled and observed. Besides the inexistence of a standard solution for implementing weblabs, their reconfiguration is limited to a setup procedure that enables interconnecting a set of preselected I&Ms into an Experiment Under Test (EUT). Moreover, those I&Ms are not able to be replicated or shared by different weblab infrastructures, since they are usually based on hardware platforms. Thus, to overcome these limitations, this paper proposes a standard solution that uses I&Ms embedded into Field-Programmable Gate Array (FPGAs) devices. It is presented an architecture based on the IEEE1451.0 Std. supported by a FPGA-based weblab infrastructure able to be remotely reconfigured with I&Ms, described through standard Hardware Description Language (HDL) files, using a Reconfiguration Tool (RecTool).
Resumo:
Adopting standard-based weblab infrastructures can be an added value for spreading their influence and acceptance in education. This paper suggests a solution based on the IEEE1451.0 Std. and FPGA technology for creating reconfigurable weblab infrastructures using Instruments and Modules (I&Ms) described through standard Hardware Description Language (HDL) files. It describes a methodology for creating and binding I&Ms into an IEEE1451-module embedded in a FPGA-based board able to be remotely controlled/accessed using IEEE1451-HTTP commands. At the end, an example of a step-motor controller module bond to that IEEE1451-module is described.
Resumo:
In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.
Resumo:
Mycologia, Vol. 98, nº6
Resumo:
Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures.
Resumo:
Thesis to obtain the Master of Science Degree in Computer Science and Engineering
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The Tagus estuary is bordered by the largest metropolitan area in Portugal, the Lisbon capital city council. It has suffered the impact of several major tsunamis in the past, as shown by a recent revision of the catalogue of tsunamis that struck the Portuguese coast over the past two millennia. Hence, the exposure of populations and infrastructure established along the riverfront comprises a critical concern for the civil protection services. The main objectives of this work are to determine critical inundation areas in Lisbon and to quantify the associated severity through a simple index derived from the local maximum of momentum flux per unit mass and width. The employed methodology is based on the mathematical modelling of a tsunami propagating along the estuary, resembling the one occurred on the 1 November of 1755 that followed the 8.5 M-w Great Lisbon Earthquake. The employed simulation tool was STAV-2D, a shallow-flow solver coupled with conservation equations for fine solid phases, and now featuring the novelty of discrete Lagrangian tracking of large debris. Different sets of initial conditions were studied, combining distinct tidal, atmospheric and fluvial scenarios, so that the civil protection services were provided with comprehensive information to devise public warning and alert systems and post-event mitigation intervention. For the most severe scenario, the obtained results have shown a maximum inundation extent of 1.29 km at the AlcA cent ntara valley and water depths reaching nearly 10 m across Lisbon's riverfront.
Impact of design options in zero energy building conception: the case of large buildings in Portugal
Resumo:
The new recast of Directive 2010/31/EU in order to implement the new concept NZEB in new buildings, is to be fully respected by all Member States, and is revealed as important measure to promote the reduction of energy consumption of buildings and encouraging the use of renewable energy. In this study, it was tested the applicability of the nearly zero energy building concept to a big size office building and its impact after a 50-years life cycle span.
Resumo:
We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of 300 fb(-1) and 3000 fb(-1) are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle phi(tau), between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay h -> tau(+)tau(-) will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of phi(t) in the vertex (t) over bar th could help to constrain the low tan beta region in the Type I model.