354 resultados para iPS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives. This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems.Methods. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucitereinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N = 40, n = 10/group for SBS test method, N=5blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3 mm; diameter, 5 mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2 mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa +/- S.D.) and modes of failures were recorded.Results. Significant difference between the two test methods and all-ceramic types were observed (P < 0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41 +/- 8 MPa) than those to low leucite (28 +/- 4 MPa), glass-infiltrated (26 +/- 4 MPa) and leucite-reinforced (23 +/- 3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15 +/- 2 MPa) than those of leucite (12 +/- 2 MPa), glass-infiltrated (9 +/- 1 MPa) and lithium disilicate ceramic (9 +/- 1 MPa) (ANOVA, P < 0.05).Significance. Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics influenced the bond strength between the core and veneering ceramic in bilayered all-ceramic systems. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.
Resumo:
Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.
Resumo:
This research studied the effects of the independent variables whey protein concentrate - WPC (3.0; 3.5; 4.0%), skimmed milk powder - SMP (4.0; 5.0; 6.0%), and isolated soy protein - IPS (1.5; 2.0; 2.5%) on the rheological and sensorial characteristics of functional dairy beverages. In all tests 7% of sucrose was added to the ingredients. The rheological parameters were obtained in duplicate at the temperature of 10° C using a cone and plate rheometer, and fitted to the Power law model. The samples revealed a non-Newtonian fluid behavior both in the upward and downward curves, typical of a tixotropic fluid. The dairy beverages were submitted to a sensory analysis by a group of fifty untrained tasters who used a hedonic scale of nine points, the extremes being 1 - disliked extremely and 9 - liked extremely, in order to evaluate the following parameters: general acceptability; appearance and color; consistency; taste and aroma. The dairy beverage produced with 3% WPC, 6% SMP and 1.5% IPS, (treatment 3), was the one that obtained the best average score for those attributes and was preferred by the tasters. The variables SMP and IPS and the interaction between WPC and SMP presented a positive effect on the sensory consistency attributes: the higher amount of those ingredients in the formula the more the tasters liked the consistency.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA