965 resultados para higher spectral component
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
Resumo:
Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.
Resumo:
High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.
Resumo:
BACKGROUND: Reports on the effects of focal hemispheric damage on sleep EEG are rare and contradictory. PATIENTS AND METHODS: Twenty patients (mean age +/- SD 53 +/- 14 years) with a first acute hemispheric stroke and no sleep apnea were studied. Stroke severity [National Institute of Health Stroke Scale (NIHSS)], volume (diffusion-weighted brain MRI), and short-term outcome (Rankin score) were assessed. Within the first 8 days after stroke onset, 1-3 sleep EEG recordings per patient were performed. Sleep scoring and spectral analysis were based on the central derivation of the healthy hemisphere. Data were compared with those of 10 age-matched and gender-matched hospitalized controls with no brain damage and no sleep apnea. RESULTS: Stroke patients had higher amounts of wakefulness after sleep onset (112 +/- 53 min vs. 60 +/- 38 min, p < 0.05) and a lower sleep efficiency (76 +/- 10% vs. 86 +/- 8%, p < 0.05) than controls. Time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep and total sleep time were lower in stroke patients, but differences were not significant. A positive correlation was found between the amount of SWS and stroke volume (r = 0.79). The slow-wave activity (SWA) ratio NREM sleep/wakefulness was lower in patients than in controls (p < 0.05), and correlated with NIHSS (r = -0.47). CONCLUSION: Acute hemispheric stroke is accompanied by alterations of sleep EEG over the healthy hemisphere that correlate with stroke volume and outcome. The increased SWA during wakefulness and SWS over the healthy hemisphere contralaterally to large strokes may reflect neuronal hypometabolism induced transhemispherically (diaschisis).
Resumo:
The attentional blink (AB) represents a fundamental limit of information processing. About 5-10 % of all subjects, however, do not show the AB. Because of the low base rate of these so-called non-blinkers, studies on mechanisms underlying non-blinkers' absent AB are extremely scant. The few existent studies found non-blinkers to be faster and more efficient in information processing compared to blinkers. A personality trait that has been linked previously to speed and efficiency of information processing as well as to the magnitude of the AB is impulsivity. Therefore, the present study investigated whether 15 non-blinkers and 15 blinkers differed from each other in functional and/or dysfunctional impulsivity. To obtain a better understanding of the underlying processing mechanisms, the P300 component in the event-related potential was recorded during performance on the AB task. Our results indicated higher functional impulsivity in non-blinkers compared to blinkers but no differences between the two groups in dysfunctional impulsivity. As indicated by shorter P300 latency, non-blinkers processed information faster than blinkers after the AB period but slower during the AB period. These speed effects, however, were not associated with functional impulsivity. Thus, impulsivity and speed of information processing appear to represent two rather independent sources for non-blinkers' absent AB
Resumo:
A tandem mass spectral database system consists of a library of reference spectra and a search program. State-of-the-art search programs show a high tolerance for variability in compound-specific fragmentation patterns produced by collision-induced decomposition and enable sensitive and specific 'identity search'. In this communication, performance characteristics of two search algorithms combined with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' (Wiley Registry MSMS, John Wiley and Sons, Hoboken, NJ, USA) were evaluated. The search algorithms tested were the MSMS search algorithm implemented in the NIST MS Search program 2.0g (NIST, Gaithersburg, MD, USA) and the MSforID algorithm (John Wiley and Sons, Hoboken, NJ, USA). Sample spectra were acquired on different instruments and, thus, covered a broad range of possible experimental conditions or were generated in silico. For each algorithm, more than 30,000 matches were performed. Statistical evaluation of the library search results revealed that principally both search algorithms can be combined with the Wiley Registry MSMS to create a reliable identification tool. It appears, however, that a higher degree of spectral similarity is necessary to obtain a correct match with the NIST MS Search program. This characteristic of the NIST MS Search program has a positive effect on specificity as it helps to avoid false positive matches (type I errors), but reduces sensitivity. Thus, particularly with sample spectra acquired on instruments differing in their Setup from tandem-in-space type fragmentation, a comparably higher number of false negative matches (type II errors) were observed by searching the Wiley Registry MSMS.
Resumo:
Low parental monitoring is related to youth risk behaviors such as delinquency and aggression. The purpose of this dissertation was to describe the development and evaluation of a parent education intervention to increase parental monitoring in Hispanic parents of middle school children.^ The first study described the process of intervention mapping as used to develop Padres Trabajando por la Paz, a newsletter intervention for parents. Using theory, empirical literature, and information from the target population, performance objectives and determinants for monitoring were defined. Learning objectives were specified and a staged social-cognitive approach was used to develop methods and strategies delivered through newsletters.^ The second study examined the outcomes of a randomized trial of the newsletter intervention. Outcome measures consisted of a general measure of monitoring, parent and child reports of monitoring behaviors targeted by the intervention, and psychosocial determinants of monitoring (self-efficacy, norms, outcome expectancies, knowledge, and beliefs). Seventy-seven parents completed the randomized trial, half of which received four newsletters over an eight-week period. Results revealed a significant interaction effect for baseline and treatment for parent's reports of norms for monitoring (p =.009). Parents in the experimental condition who scored low at baseline reported increased norms for monitoring at follow-up. A significant interaction effect for child reports of parental monitoring behaviors (p =.04) reflected an small increase across baseline levels in the experimental condition and decreases for the control condition at higher baseline scores. Both groups of parents reported increased levels of monitoring at follow-up. No other outcome measures varied significantly by condition.^ The third study examined the relationship between the psychosocial determinants of parental monitoring and parental monitoring behaviors in the study population. Weak evidence for a relationship between outcome expectancies and parental monitoring behaviors suggests further research in the area utilizing stronger empirical models such as longitudinal design and structural equation modeling.^ The low-cost, minimal newsletter intervention showed promise for changing norms among Hispanic parents for parental monitoring. In light of the importance of parental monitoring as a protective factor for youth health risk behaviors, more research needs to be done to develop and evaluate interventions to increase parental monitoring. ^
Resumo:
Attentional blink (AB) refers to impaired identification of a target (T2) when this target follows a preceding target (T1) after about 150-450 ms within a stream of rapidly presented stimuli. Previous research on a possible relation between AB and mental ability (MA) turned out to be highly ambiguous. The present study investigated MA-related individual differences in consolidation of T2 in working memory during the AB as indicated by the P300 component of the event-related potential. Thirty high (HA) and 30 low MA (LA) female participants performed an AB task while their brain activity was recorded. The AB did not differ between the two groups. HA individuals exhibited a larger P300 amplitude and longer P300 latencies during the AB suggesting higher mental effort. This higher mental effort, however, did not result in better performance presumably because of more competition between target and distractor stimuli in HA than LA individuals.
Resumo:
PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.
Resumo:
Dental caries is a common preventable childhood disease leading to severe physical, mental and economic repercussions for children and their families if left untreated. A needs assessment in Harris County reported that 45.9% of second graders had untreated dental caries. In order to address this growing problem, the School Sealant Program (SSP), a primary preventive initiative, was launched by the Houston Department of Health and Human Services (HDHHS) to provide oral health education, and underutilized dental preventive services to second grade children from participating Local School Districts (LSDs). ^ To determine the effectiveness and efficiency of the SSP, a program evaluation was conducted by the HDHHS between September 2007 and June 2008 for the Oral Health Education (OHE) component of the SSP. The objective of the evaluation was to assess short term changes in oral health knowledge of the participants and determine if these changes, if any, were due to the OHE sessions. An 8-item multiple choice pre/post test was developed for this purpose and administered to the participants before and immediately after the OHE sessions. ^ The present project analyzed pre and post test data of 1,088 second graders from 22 participating schools. Changes in overall and topic-specific knowledge of the program participants before and after the OHE sessions were analyzed using the Wilcoxon's signed rank test. ^ Results. The overall knowledge assessment showed a statistically significant (p <0.001) increase in the dental health knowledge of the participants after the oral health education sessions. Participants in the higher scoring category (7-8 correct responses) increased from 9.5% at baseline to 60.8% after the education sessions. Overall knowledge increased in all school regions with the highest knowledge gains seen in the Central and South regions. Males and females had similar knowledge gains. Significant knowledge differences were also found for each of the topic specific categories (functions of teeth, healthy diet, healthy habits, dental sealants; p<0.001) indicating an increase in topic specific knowledge of the participants post-health education sessions. ^ Conclusions. The OHE sessions were successful in increasing the short term oral health knowledge of the participants. ^
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^
Resumo:
Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.