937 resultados para high volume peritoneal dialysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of three commercial weld-hardfacing alloys to erosive wear has been studied. These were high chromium white cast irons, deposited by an open-arc welding process, widely used in the mineral processing and steelmaking industries for wear protection. Erosion tests were carried out with quartz sand, silicon carbide grit and blast furnace sinter of two different sizes, at a velocity of 40 m s-1 and at impact angles in the range 20° to 90°. A monolithic white cast iron and mild steel were also tested for comparison. Little differences were found in the wear rates when silica sand or silicon carbide grit was used as the erodent. Significant differences were found, however, in the rankings of the materials. Susceptibility to fracture of the carbide particles in the white cast irons played an important role in the behaviour of the white cast irons. Sinter particles were unable to cause gross fracture of the carbides and so those materials with a high volume fraction of carbides showed the greatest resistance to erosive wear. Silica and silicon carbide were capable of causing fracture of the primary carbides. Concentration of plastic strain in the matrix then led to a high wear rate for the matrix. At normal impact with silica or silicon carbide erodents mild steel showed a greater resistance to erosive wear than these alloys. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A process is presented for the forming of variable cross-section I-beams by hot rolling. Optimized I-beams with variable cross-section offer a significant weight advantage over prismatic beams. By tailoring the cross-section to the bending moment experienced within the beam, around 30% of the material can be saved compared to a standard section. Production of such beams by hot rolling would be advantageous, as It combines high volume capacity with high material yields. Through controlled variation of the roll gap during multiple passes, beams with a variable cross-section have been created using shaped rolls similar to those used for conventional I-beam rolling. The process was tested experimentally on a small scale rolling mill, using plasticine as the modelling material. These results were then compared to finite element simulations of individual stages of the process conducted using Abaqus/Standard. Results here show that the process can successfully form a beam with a variable depth web. The main failure modes of the process, and the limitations on the achievable variations In geometry are also presented. Finally, the question of whether or not optimal beam geometries can be created by this process Is discussed. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high power EUV source is one of key issues in the development of EUV lithography which is considered to be the most promising technology among the next generation lithography. However neither DPP nor LPP seems to meet the requirements of the commercial high-volume product. Insufficiency of DPP and LPP motivate the investigation of other means to produce the EUV radiation required in lithography. ECR plasma seems to be one of the alternatives. In order to investigate the feasibility of ECR plasma as a EUV light source, the EUV power emitted by SECRAL was measured. A EUV power of 1.03W in 4 pi sr solid angle was obtained when 2000W 18GHz rf power was launched, and the corresponding CE was 0.5%. Considering that SECRAL is designed to produce very high charge state ions, this very preliminary result is inspiring. Room-temperature ECR plasma and Sn plasma are both in the planned schedule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, detailed studies on the sedimentology and petrophysical properties of reservoir rocks in the Shan#2 Member of Shanxi Formation, Zizhou gas field of Ordos Basin, are carried out, based on outcrop description, core description, wireline log interpretation and analysis of petrophysical properties. In the context of stratigraphic division scheme of the Upper Paleozoic in Ordos Basin, the Shan#2 Member is further divided into three subintervals: the Shan#23, Shan#22 and Shan#21, based on the marker beds,depositional cycles, wireline log patterns. Subaqueous deltaic-front distributary channels, distributed from the south to north, is identified,which is the main reservoir sand bodies for gases of Shan#2 Member at Zizhou gas field. Quartzose and lithic-quartzose sandstones, commonly with a high volume of cement, but a low volume of matrix, are the major reservoir rocks in the studied area. All sandstones have been evolved into the late diagenetic stage (referred to as diagenetic stage B) during the burial, experiencing compaction, cementation, replacement and dissolution, in which the compaction and cementation could have reduced the porosity, while dissolution could have improved the petrophysical properties. The pore types in the reservoirs are dominated by intergranular-solutional, intergranular-intercrystal and intercrystal-solutional porosity. According to the parameters and capillary pressure curves of test samples, five types of pore texture (I-V) are differentiated, in which types II and III pore textures displayed by low threshold pressure-wide pore throat and moderate threshold pressure-moderately wide pore throat, exist widespread. Sandstone reservoirs in the studied area are characterized by exceptionally low porosity and permeability, in which the petrophysical properties of those in Shan#23 horizon are relatively better. The petrophysical property of reservoirs was influenced both by the sedimentation and diagenesis. In general, the coarse quartzose sandstones deposited in subaqueous distributary channels show the best petrophysical property, which tends to be worse as the grain size decreases and lithic amount increases. Three types of gas reservoirs in Shan#23 horizon are classified according to petrophysical properties (porosity and permeability), which could have been influenced by the initial depositional facies, diagenesis and tectonics. On the basis of the study on the geological conditions of reservoirs in the area, it is concluded that sedimetary facies, diagenesis and tectonic actions can provide an important foundation for gas pool formation, which can also control the accumulation and distribution of gas reservoirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directed self-assembly (DSA) of block copolymers (BCPs) is a prime candidate to further extend dimensional scaling of silicon integrated circuit features for the nanoelectronic industry. Top-down optical techniques employed for photoresist patterning are predicted to reach an endpoint due to diffraction limits. Additionally, the prohibitive costs for “fabs” and high volume manufacturing tools are issues that have led the search for alternative complementary patterning processes. This thesis reports the fabrication of semiconductor features from nanoscale on-chip etch masks using “high χ” BCP materials. Fabrication of silicon and germanium nanofins via metal-oxide enhanced BCP on-chip etch masks that might be of importance for future Fin-field effect transistor (FinFETs) application are detailed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flip-chip assembly, developed in the early 1960s, is now being positioned as a key joining technology to achieve high-density mounting of electronic components on to printed circuit boards for high-volume, low-cost products. Computer models are now being used early within the product design stage to ensure that optimal process conditions are used. These models capture the governing physics taking place during the assembly process and they can also predict relevant defects that may occur. Describes the application of computational modelling techniques that have the ability to predict a range of interacting physical phenomena associated with the manufacturing process. For example, in the flip-chip assembly process we have solder paste deposition, solder joint shape formation, heat transfer, solidification and thermal stress. Illustrates the application of modelling technology being used as part of a larger UK study aiming to establish a process route for high-volume, low-cost, sub-100-micron pitch flip-chip assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour