860 resultados para high optical-to-optical conversion efficiency
Resumo:
The present study aimed to evaluate the role of social support and self-efficacy on the level of stress associated with the transition from high school to university. One hundred and eight-five university students who had completed high school in the previous year completed a three-part questionnaire designed to gather information on their levels of self-efficacy, social support, and stress associated with their transition. The results showed that self-efficacy was a significant predictor of stress associated with the transition to university in that higher levels of self-efficacy were associated with lower levels of stress while social support was a non-significant predictor of stress. [Author abstract]
Resumo:
Bio energy is a renewable energy and a solution to the depleting fossil fuels. Bio energy such as heat, power and bio fuel is generated by conversion technologies using biomass for example domestic waste, root crops, forest residue and animal slurry. Pyrolysis, anaerobic digestion and combined heat and power engine are some examples of the technologies. Depending on the nature of a biomass, it can be treated with various technologies giving out some products, which can be further treated with other technologies and eventually converted into the final products as bio energy. The pathway followed by the biomass, technologies, intermediate products and bio energy in the conversion process is referred to as bio energy pathway. Identification of appropriate pathways optimizes the conversion process. Although there are various approaches to create or generate the pathways, there is still a need for a semantic approach to generate the pathways, which allow checking the consistency of the knowledge, and to share and extend the knowledge efficiently. This paper presents an ontology-based approach to automatic generation of the pathways for biomass to bio energy conversion, which exploits the definition and hierarchical structure of the biomass and technologies, their relationship and associated properties, and infers appropriate pathways. A case study has been carried out in a real-life scenario, the bio energy project for the North West of Europe (Bioen NW), which showed promising results.
Resumo:
Photovoltaic (PV) solar power generation is proven to be effective and sustainable but is currently hampered by relatively high costs and low conversion efficiency. This paper addresses both issues by presenting a low-cost and efficient temperature distribution analysis for identifying PV module mismatch faults by thermography. Mismatch faults reduce the power output and cause potential damage to PV cells. This paper first defines three fault categories in terms of fault levels, which lead to different terminal characteristics of the PV modules. The investigation of three faults is also conducted analytically and experimentally, and maintenance suggestions are also provided for different fault types. The proposed methodology is developed to combine the electrical and thermal characteristics of PV cells subjected to different fault mechanisms through simulation and experimental tests. Furthermore, the fault diagnosis method can be incorporated into the maximum power point tracking schemes to shift the operating point of the PV string. The developed technology has improved over the existing ones in locating the faulty cell by a thermal camera, providing a remedial measure, and maximizing the power output under faulty conditions.
Resumo:
Pseudomonas aeruginosa is an opportunistic pathogen that has received attention because of its close association with cystic fibrosis (CF). Chronic pulmonary infection with the mucoid P. aeruginosa is the leading cause of mortality in CF patients. This bacterium has the ability to sense and adapt to the harsh environment in the CF lung by converting from a nonmucoid to a mucoid state. The mucoid phenotype is caused by overproduction of a polysaccharide called alginate. Alginate production is regulated by the algT/U operon containing five genes, algT/U-mucA-mucB-mucC-mucD. Alginate overproduction in CF isolates has been partially attributed to a loss-of-function mutation in mucA that results in the overexpression of algT. This mucoid phenotype is unstable, reverting to the nonmucoid form when the isolates are cultured outside of the CF lung. This study was undertaken to determine the mechanisms involved in the conversion from the mucoid to the nonmucoid form. Thirty-six spontaneous nonmucoid variants of a known mucoid isolate with a mucA mutation were analyzed. Ten of these isolates were complemented in trans by plasmids containing the algT operon and the algT gene. Chromosomal DNA was extracted and the mucA and algT genes were amplified by the polymerase chain reaction. Sequence analysis of the genes showed that these mutants retained the original mucA mutation but acquired secondary mutations in the algT gene.
Resumo:
This paper discusses the importance of space in today’s space driven world, the current space activities of Turkey, its space organizations with legislation background information and calls for the necessity for the establishment of the Turkish Space Agency (TSA). Firstly, the importance of space is given which is followed by a brief background and current space activities in Turkey. Then, the answers to why Turkey needs a National Space Agency are outlined by stating its expected role and duties. Additionally, the framework for space policy for Turkey is proposed and the findings are compared with other developing regional space actors. Lastly, it is proposed and demonstrated that Turkey is on the right track with its space policy and it is suggested that the establishment of the TSA is critical both for a coherent space policy and progress as well as the successful development of its national space industry, security and international space relations.
Resumo:
A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.
Resumo:
This paper examines whether restaurant reservations should be locked to specific tables at the time the reservation is made, or whether the reservations should be pooled and assigned to tables in real-time. In two motivating studies, we find that there is a lack of consensus in the restaurant industry on handling reservations. Contrary to what might be expected based on research that shows the benefits of resource pooling in other contexts, a survey of 425 restaurants indicated that over 80% lock reservations to tables. In two simulation studies, we determine that pooling reservations enables a 15-minute reduction in table turn times more than 15% of the time, which consequently increases service efficiency and enables a restaurant to serve more customers during peak periods. Pooling had the most consistent advantage with higher customer service levels, with larger restaurants, with customers who arrive late, and with larger variation in customer arrival time.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
This paper analyzes the implementation of new technologies in network industries through the development of a suitable regulatory scheme. The analysis focuses on Smart Grid (SG) technologies which, among others benefits, could save operational costs and reduce the need for further conventional investments in the grid. In spite of the benefits that may result from their implementation, the adoption of SGs by network operators can be hampered by the uncertainties surrounding actual performances. A decision model has been developed to assess the firms' incentives to invest in "smart" technologies under different regulatory schemes. The model also enables testing the impact of uncertainties on the reduction of operational costs, and of conventional investments. Under certain circumstances, it may be justified to support the development and early deployment of emerging innovations that have a high potential to ameliorate the efficiency of the electricity system, but whose adoption faces many uncertainties.
Resumo:
我们报道了一种以二极管泵浦的 1.94 μm Tm:YAP激光器为泵浦源,常温下在2.1 μm连续运行的Ho:YAG激光器。最大输出功率1.5 W,相应斜率效率为17.9%,二极管到的转换效率为5.6%。
Resumo:
We have analyzed the coupling of ultraintense lasers (at similar to 2 X 1019 W/cm(2)) with solid foils of limited transverse extent (similar to 10 s of mu m) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.
Resumo:
We report on measurements of the saturated single frequency output of a Ge XXIII x-ray laser on the J=0-->1 transition at 19.6 nm from a refraction compensating double target driven by 150 J of energy from 75-ps Nd-glass laser pulses. The 19.6-nm line completely dominated the laser output. The output energy was measured to be 0.9 mJ in a beam of 6.6x30 mrad(2) divergence, corresponding to a conversion efficiency of 6 x 10(-6).
Resumo:
This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure.
This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
Initial results for CO oxidation indicate that the advanced micro-structure leads to enhanced conversion efficiency. Despite an 79% reduction in metal loading and the absence of a washcoat, the novel substrate sample performs well, with a light-off temperature (LOT) only 15 °C higher than the commercial 400 cpsi sample.
To test the effects of catalyst ageing on light-off temperature, each sample was aged statically at a temperature of 1000 °C, based on the Bench Ageing Time (BAT) equation. The novel substrate performed impressively when compared to the commercial samples, with a variation in light-off temperature of only 3% after 80 equivalent hours of ageing, compared to 12% and 25% for the 400 cpsi and 900 cpsi monoliths, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)