882 resultados para genetic algorithm (GA)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Este trabalho tem como objetivo apresentar o desenvolvimento de uma metaheurística híbrida baseada no ciclo de vida viral, mais especificamente dos Retrovírus, que fazem parte do grupo dos seres que evoluem mais rápido na natureza. Este algoritmo é denominado Algoritmo Genético Retroviral Iterativo (AGRI) e para embasamento computacional são utilizados conceitos de Algoritmo Genético (AG) e biológico características de replicação e evolução retroviral, o que proporciona uma grande diversidade genética o que aumenta a probabilidade para encontrar a solução, fato este confirmado através de melhores resultados obtidos pelo AGRI em relação ao AG.
Resumo:
Este trabalho tem como objetivo apresentar um método para solucionar o problema de mapeamento entre as soluções teóricas de gerenciamento dinâmico de espectro (DSM) e os parâmetros de controle das densidades espectrais de potência (PSDs) de transmissão dos modems comerciais. O método utiliza algoritmos genéticos (AG) codificado em inteiros para solucionar o problema. O AG é responsável por achar os melhores parâmetros para representar uma PSD arbitrária, considerando as restrições impostas pelos equipamentos e padrões atuais DSL. O trabalho apresenta ainda um estudo comparativo do método proposto com um concorrente, além de estudo estatístico do método proposto, considerando média, desvio padrão e intervalo de confiança. Adicionalmente, são apresentados dois setups para uso em laboratório, sendo um para medição de PSDs e o outro para funções de transferência, os quais podem ser reaproveitados em outros trabalhos.
Resumo:
Nos últimos anos, com o surgimento de novos serviços e equipamentos para o sistema de comunicação móvel com maiores larguras de banda de operação e ocupando espaços cada vez menores, o desenvolvimento de novas antenas de bandas largas e com dimensões pequenas se tornou um dos principais desafios das pesquisas na área de antenas. Neste trabalho, duas estruturas de antenas de bandas largas e dimensões reduzidas foram analisadas e otimizadas. Na primeira parte, a antena filamentar monopolo dobrado (Wire Built-in Folded Monopole Antenna, W-BFMA) foi investigada e teve sua largura de banda otimizada, conectada a linha de alimentação em diferentes impedâncias. Para modelar a estrutura da antena W-BFMA foi usado o método numérico dos momentos (Method of Moments - MoM), e para sua otimização os métodos: paramétrico, hill climbing e algoritmo genético (AG). Programas computacionais baseados na linguagem Matlab foram desenvolvidos para modelagem, otimização e cálculos das principais curvas características da antena W-BFMA. Na segunda parte, duas diferentes configurações de antenas monopolos planos usando a tecnologia de banda ultra-larga (Ultra- Wideband Antenna, UWB) foram investigadas e otimizadas com a ajuda do programa comercial Computer Simulation Technology (CST) Microwave Studio. Ambas as antenas UWB foram alimentadas por uma linha de microfita (microstrip line) na impedância de 50Ω. A antena UWB que apresentou melhor resultado teve o seu protótipo construído, as principais curvas características, tais como: perda de retorno, ganho, distribuição de corrente e diagrama de radiação foram analisadas. Os resultados simulados foram comparados com resultados obtidos experimentalmente.
Resumo:
Várias das técnicas tradicionais de Mineração de Dados têm sido aplicadas com êxito e outras esbarram em limitações, tanto no desempenho como na qualidade do conhecimento gerado. Pesquisas recentes têm demonstrado que as técnicas na área de IA, tais como Algoritmo Genético (AG) e Lógica Difusa (LD), podem ser utilizadas com sucesso. Nesta pesquisa o interesse é revisar algumas abordagens que utilizam AG em combinação com LD de forma híbrida para realizar busca em espaços grandes e complexos. Este trabalho apresenta o Algoritmo Genético (AG), utilizando Lógica Difusa, para a codificação, avaliação e reprodução dos cromossomos, buscando classificar dados através de regras extraídas de maneira automática com a evolução dos cromossomos. A Lógica Difusa é utilizada para deixar as regras mais claras e próximas da linguagem humana, utilizando representações lingüísticas para identificar dados contínuos.
Resumo:
As Redes de Sensores Sem Fio possuem capacidades limitadas de processamento, armazenamento, comunicação (largura de banda) e fonte de energia, além de possuírem características e requisitos básicos de uma RSSF como: necessidade de se auto-organizar, comunicação com difusão de curto alcance e roteamento com múltiplos saltos. Neste trabalho é proposto uma ferramenta que otimize o posicionamento e os pacotes entregues através do uso de Algoritmo Genético (AG). Para solucionar o problema de roteamento que melhore o consumo de energia e maximize a agregação de dados é proposto a utilização de lógica fuzzy no protocolo de roteamento Ad hoc Ondemand Distance Vector (AODV). Esta customização é intitulada AODV – Fuzzy for Wireless Sensor Networks (AODV-FWSN). Os resultados mostram que a solução proposta é eficiente e consegue prolongar a vida útil da RSSF e melhorar a taxa de entrega de dados quando comparado com soluções similares.
Resumo:
O sistema WDM (Wavelength Division Multiplexing) é considerado como uma tecnologia madura para ser usada no backbone de redes ópticas. Entretanto, encontrar uma solução ótima para o algoritmo de atribuição de comprimento de onda no projeto e operação destas redes, ainda é uma questão em aberto. A pesquisa realizada nesta tese aborda os principais aspectos relacionados ao processo de atribuição de comprimento de onda em sistemas WDM, e como resultado foi proposta uma metodologia que minimiza a degradação do sinal óptico gerada pela modulação de fase cruzada (XPM – Cross-Phase Modulation). Esta proposta é composta por uma metodologia híbrida baseada em Coloração de Grafo e Algoritmo Genético (AG), sendo que o primeiro tem a função de reduzir o número de comprimentos de onda necessários para atender a matriz de tráfego (que é fornecida a priori) e o último tem a função de encontrar a ordem de ativação de canais na grade de comprimentos de onda, com o objetivo de reduzir o efeito XPM. A proposta foi comparada com o algoritmo First-Fit em diferentes cenários e topologias de redes, e demonstrou uma considerável redução na probabilidade de bloqueio.
Resumo:
In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present work was to study the control of the dynamics of diatomic heteronuclear molecules interacting with electric fields created by lasers. Specifically in this work, the molecular photoassociation phenomenon will be analyzed. At this phenomenon, the atom's relative movement is described by a particle that moves in a morse potential well under the influence of an external time dependant force related to the external field. Based on the optimum control theory (OCT), it is presented at the present work laser pulses that alternate a given initial molecular state to a desirable end state, wich in this work was represented by the minimization of a cost functional that indicates how close. To do so, a computational sistem know as Genetic Algorithm (GA) was developed that can be characterizes as an extremelly eficient technique capable of scanning the solutions space and find results close to the optimum solutions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.